File size: 12,541 Bytes
96b5fbc 8967fdc 96b5fbc c4c83a9 96b5fbc 0b3aa24 96b5fbc 35a51e7 96b5fbc a292a02 35a51e7 96b5fbc 0b3aa24 96b5fbc 8967fdc 96b5fbc 8967fdc 8576be4 62dfacb b9070a7 bd49f90 96b5fbc f16cd6d 96b5fbc 0b3aa24 96b5fbc 01d1834 96b5fbc 0b3aa24 96b5fbc 0b3aa24 96b5fbc 0b3aa24 96b5fbc 8576be4 b9070a7 8967fdc 223338e 62dfacb 4194132 8576be4 b9070a7 8967fdc 223338e 62dfacb 223338e 4194132 8576be4 b9070a7 8967fdc 223338e 62dfacb 0b3aa24 62dfacb 96b5fbc bd49f90 96b5fbc bd49f90 96b5fbc 01d1834 96b5fbc 01d1834 96b5fbc 0b3aa24 96b5fbc 8576be4 96b5fbc f16cd6d 8576be4 96b5fbc 8576be4 96b5fbc 76cab13 96b5fbc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 |
---
library_name: pytorch
license: other
tags:
- generative_ai
- android
pipeline_tag: unconditional-image-generation
---

# Stable-Diffusion-v2.1: Optimized for Mobile Deployment
## State-of-the-art generative AI model used to generate detailed images conditioned on text descriptions
Generates high resolution images from text prompts using a latent diffusion model. This model uses CLIP ViT-L/14 as text encoder, U-Net based latent denoising, and VAE based decoder to generate the final image.
This model is an implementation of Stable-Diffusion-v2.1 found [here](https://github.com/CompVis/stable-diffusion/tree/main).
This repository provides scripts to run Stable-Diffusion-v2.1 on Qualcomm® devices.
More details on model performance across various devices, can be found
[here](https://aihub.qualcomm.com/models/stable_diffusion_v2_1).
### Model Details
- **Model Type:** Model_use_case.image_generation
- **Model Stats:**
- Input: Text prompt to generate image
| Model | Precision | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Primary Compute Unit | Target Model
|---|---|---|---|---|---|---|---|---|
| text_encoder | w8a16 | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | QNN_CONTEXT_BINARY | 18.499 ms | 0 - 8 MB | NPU | Use Export Script |
| text_encoder | w8a16 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN_CONTEXT_BINARY | 8.205 ms | 0 - 3 MB | NPU | Use Export Script |
| text_encoder | w8a16 | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN_CONTEXT_BINARY | 8.377 ms | 0 - 9 MB | NPU | Use Export Script |
| text_encoder | w8a16 | SA7255P ADP | Qualcomm® SA7255P | QNN_CONTEXT_BINARY | 18.499 ms | 0 - 8 MB | NPU | Use Export Script |
| text_encoder | w8a16 | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | QNN_CONTEXT_BINARY | 8.366 ms | 0 - 2 MB | NPU | Use Export Script |
| text_encoder | w8a16 | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | QNN_CONTEXT_BINARY | 8.216 ms | 0 - 2 MB | NPU | Use Export Script |
| text_encoder | w8a16 | SA8775P ADP | Qualcomm® SA8775P | QNN_CONTEXT_BINARY | 8.377 ms | 0 - 9 MB | NPU | Use Export Script |
| text_encoder | w8a16 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | QNN_CONTEXT_BINARY | 8.285 ms | 0 - 7 MB | NPU | Use Export Script |
| text_encoder | w8a16 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | PRECOMPILED_QNN_ONNX | 8.141 ms | 0 - 387 MB | NPU | Use Export Script |
| text_encoder | w8a16 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN_CONTEXT_BINARY | 5.601 ms | 0 - 18 MB | NPU | Use Export Script |
| text_encoder | w8a16 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | PRECOMPILED_QNN_ONNX | 5.404 ms | 0 - 19 MB | NPU | Use Export Script |
| text_encoder | w8a16 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | QNN_CONTEXT_BINARY | 4.56 ms | 0 - 15 MB | NPU | Use Export Script |
| text_encoder | w8a16 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | PRECOMPILED_QNN_ONNX | 5.312 ms | 0 - 14 MB | NPU | Use Export Script |
| text_encoder | w8a16 | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN_CONTEXT_BINARY | 8.652 ms | 0 - 0 MB | NPU | Use Export Script |
| text_encoder | w8a16 | Snapdragon X Elite CRD | Snapdragon® X Elite | PRECOMPILED_QNN_ONNX | 8.311 ms | 378 - 378 MB | NPU | Use Export Script |
| unet | w8a16 | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | QNN_CONTEXT_BINARY | 232.583 ms | 0 - 8 MB | NPU | Use Export Script |
| unet | w8a16 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN_CONTEXT_BINARY | 93.286 ms | 0 - 2 MB | NPU | Use Export Script |
| unet | w8a16 | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN_CONTEXT_BINARY | 87.78 ms | 0 - 9 MB | NPU | Use Export Script |
| unet | w8a16 | SA7255P ADP | Qualcomm® SA7255P | QNN_CONTEXT_BINARY | 232.583 ms | 0 - 8 MB | NPU | Use Export Script |
| unet | w8a16 | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | QNN_CONTEXT_BINARY | 93.785 ms | 0 - 3 MB | NPU | Use Export Script |
| unet | w8a16 | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | QNN_CONTEXT_BINARY | 93.873 ms | 0 - 3 MB | NPU | Use Export Script |
| unet | w8a16 | SA8775P ADP | Qualcomm® SA8775P | QNN_CONTEXT_BINARY | 87.78 ms | 0 - 9 MB | NPU | Use Export Script |
| unet | w8a16 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | QNN_CONTEXT_BINARY | 93.717 ms | 0 - 7 MB | NPU | Use Export Script |
| unet | w8a16 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | PRECOMPILED_QNN_ONNX | 95.033 ms | 0 - 898 MB | NPU | Use Export Script |
| unet | w8a16 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN_CONTEXT_BINARY | 66.248 ms | 0 - 18 MB | NPU | Use Export Script |
| unet | w8a16 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | PRECOMPILED_QNN_ONNX | 67.516 ms | 0 - 14 MB | NPU | Use Export Script |
| unet | w8a16 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | QNN_CONTEXT_BINARY | 58.258 ms | 0 - 14 MB | NPU | Use Export Script |
| unet | w8a16 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | PRECOMPILED_QNN_ONNX | 58.617 ms | 0 - 19 MB | NPU | Use Export Script |
| unet | w8a16 | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN_CONTEXT_BINARY | 95.326 ms | 0 - 0 MB | NPU | Use Export Script |
| unet | w8a16 | Snapdragon X Elite CRD | Snapdragon® X Elite | PRECOMPILED_QNN_ONNX | 96.279 ms | 843 - 843 MB | NPU | Use Export Script |
| vae | w8a16 | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | QNN_CONTEXT_BINARY | 719.113 ms | 0 - 9 MB | NPU | Use Export Script |
| vae | w8a16 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN_CONTEXT_BINARY | 270.059 ms | 1 - 3 MB | NPU | Use Export Script |
| vae | w8a16 | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN_CONTEXT_BINARY | 249.046 ms | 0 - 10 MB | NPU | Use Export Script |
| vae | w8a16 | SA7255P ADP | Qualcomm® SA7255P | QNN_CONTEXT_BINARY | 719.113 ms | 0 - 9 MB | NPU | Use Export Script |
| vae | w8a16 | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | QNN_CONTEXT_BINARY | 271.52 ms | 0 - 3 MB | NPU | Use Export Script |
| vae | w8a16 | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | QNN_CONTEXT_BINARY | 271.625 ms | 0 - 4 MB | NPU | Use Export Script |
| vae | w8a16 | SA8775P ADP | Qualcomm® SA8775P | QNN_CONTEXT_BINARY | 249.046 ms | 0 - 10 MB | NPU | Use Export Script |
| vae | w8a16 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | QNN_CONTEXT_BINARY | 269.852 ms | 0 - 2 MB | NPU | Use Export Script |
| vae | w8a16 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | PRECOMPILED_QNN_ONNX | 274.742 ms | 0 - 68 MB | NPU | Use Export Script |
| vae | w8a16 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN_CONTEXT_BINARY | 202.714 ms | 0 - 21 MB | NPU | Use Export Script |
| vae | w8a16 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | PRECOMPILED_QNN_ONNX | 203.279 ms | 3 - 22 MB | NPU | Use Export Script |
| vae | w8a16 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | QNN_CONTEXT_BINARY | 175.114 ms | 0 - 14 MB | NPU | Use Export Script |
| vae | w8a16 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | PRECOMPILED_QNN_ONNX | 174.448 ms | 3 - 17 MB | NPU | Use Export Script |
| vae | w8a16 | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN_CONTEXT_BINARY | 265.137 ms | 0 - 0 MB | NPU | Use Export Script |
| vae | w8a16 | Snapdragon X Elite CRD | Snapdragon® X Elite | PRECOMPILED_QNN_ONNX | 264.748 ms | 62 - 62 MB | NPU | Use Export Script |
## Deploy to Snapdragon X Elite NPU
Please follow the [Stable Diffusion Windows App](https://github.com/quic/ai-hub-apps/tree/main/apps/windows/python/StableDiffusion) tutorial to quantize model with custom weights.
## Quantize and Deploy Your Own Fine-Tuned Stable Diffusion
Please follow the [Quantize Stable Diffusion]({REPOSITORY_URL}/tutorials/stable_diffusion/quantize_stable_diffusion.md) tutorial to quantize model with custom weights.
## Installation
Install the package via pip:
```bash
pip install "qai-hub-models[stable-diffusion-v2-1]"
```
## Configure Qualcomm® AI Hub to run this model on a cloud-hosted device
Sign-in to [Qualcomm® AI Hub](https://app.aihub.qualcomm.com/) with your
Qualcomm® ID. Once signed in navigate to `Account -> Settings -> API Token`.
With this API token, you can configure your client to run models on the cloud
hosted devices.
```bash
qai-hub configure --api_token API_TOKEN
```
Navigate to [docs](https://app.aihub.qualcomm.com/docs/) for more information.
## Demo off target
The package contains a simple end-to-end demo that downloads pre-trained
weights and runs this model on a sample input.
```bash
python -m qai_hub_models.models.stable_diffusion_v2_1.demo
```
The above demo runs a reference implementation of pre-processing, model
inference, and post processing.
**NOTE**: If you want running in a Jupyter Notebook or Google Colab like
environment, please add the following to your cell (instead of the above).
```
%run -m qai_hub_models.models.stable_diffusion_v2_1.demo
```
### Run model on a cloud-hosted device
In addition to the demo, you can also run the model on a cloud-hosted Qualcomm®
device. This script does the following:
* Performance check on-device on a cloud-hosted device
* Downloads compiled assets that can be deployed on-device for Android.
* Accuracy check between PyTorch and on-device outputs.
```bash
python -m qai_hub_models.models.stable_diffusion_v2_1.export
```
```
Profiling Results
------------------------------------------------------------
text_encoder
Device : cs_8275 (ANDROID 14)
Runtime : QNN_CONTEXT_BINARY
Estimated inference time (ms) : 18.5
Estimated peak memory usage (MB): [0, 8]
Total # Ops : 788
Compute Unit(s) : npu (788 ops) gpu (0 ops) cpu (0 ops)
------------------------------------------------------------
unet
Device : cs_8275 (ANDROID 14)
Runtime : QNN_CONTEXT_BINARY
Estimated inference time (ms) : 232.6
Estimated peak memory usage (MB): [0, 8]
Total # Ops : 5784
Compute Unit(s) : npu (5784 ops) gpu (0 ops) cpu (0 ops)
------------------------------------------------------------
vae
Device : cs_8275 (ANDROID 14)
Runtime : QNN_CONTEXT_BINARY
Estimated inference time (ms) : 719.1
Estimated peak memory usage (MB): [0, 9]
Total # Ops : 175
Compute Unit(s) : npu (175 ops) gpu (0 ops) cpu (0 ops)
```
## Deploying compiled model to Android
The models can be deployed using multiple runtimes:
- TensorFlow Lite (`.tflite` export): [This
tutorial](https://www.tensorflow.org/lite/android/quickstart) provides a
guide to deploy the .tflite model in an Android application.
- QNN (`.so` export ): This [sample
app](https://docs.qualcomm.com/bundle/publicresource/topics/80-63442-50/sample_app.html)
provides instructions on how to use the `.so` shared library in an Android application.
## View on Qualcomm® AI Hub
Get more details on Stable-Diffusion-v2.1's performance across various devices [here](https://aihub.qualcomm.com/models/stable_diffusion_v2_1).
Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
## License
* The license for the original implementation of Stable-Diffusion-v2.1 can be found
[here](https://github.com/CompVis/stable-diffusion/blob/main/LICENSE).
* The license for the compiled assets for on-device deployment can be found [here](https://github.com/CompVis/stable-diffusion/blob/main/LICENSE)
## References
* [High-Resolution Image Synthesis with Latent Diffusion Models](https://arxiv.org/abs/2112.10752)
* [Source Model Implementation](https://github.com/CompVis/stable-diffusion/tree/main)
## Community
* Join [our AI Hub Slack community](https://aihub.qualcomm.com/community/slack) to collaborate, post questions and learn more about on-device AI.
* For questions or feedback please [reach out to us](mailto:[email protected]).
|