File size: 12,541 Bytes
96b5fbc
 
8967fdc
96b5fbc
 
 
c4c83a9
96b5fbc
 
 
0b3aa24
96b5fbc
 
 
 
35a51e7
96b5fbc
 
a292a02
35a51e7
 
96b5fbc
 
0b3aa24
96b5fbc
 
 
 
8967fdc
96b5fbc
 
 
8967fdc
8576be4
62dfacb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b9070a7
 
 
 
 
 
 
bd49f90
 
 
96b5fbc
 
 
f16cd6d
96b5fbc
0b3aa24
96b5fbc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
01d1834
96b5fbc
 
 
 
 
0b3aa24
96b5fbc
 
 
 
 
 
 
 
0b3aa24
96b5fbc
 
 
 
 
 
 
 
 
 
 
 
0b3aa24
96b5fbc
 
8576be4
 
b9070a7
8967fdc
223338e
62dfacb
 
4194132
 
8576be4
 
b9070a7
8967fdc
223338e
62dfacb
223338e
4194132
 
8576be4
 
b9070a7
8967fdc
223338e
62dfacb
0b3aa24
62dfacb
 
96b5fbc
bd49f90
 
96b5fbc
 
bd49f90
96b5fbc
 
 
 
 
 
 
 
 
01d1834
96b5fbc
01d1834
96b5fbc
 
 
0b3aa24
96b5fbc
 
8576be4
96b5fbc
f16cd6d
 
8576be4
 
 
96b5fbc
 
 
 
 
8576be4
 
96b5fbc
76cab13
96b5fbc
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
---
library_name: pytorch
license: other
tags:
- generative_ai
- android
pipeline_tag: unconditional-image-generation

---

![](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/models/stable_diffusion_v2_1/web-assets/model_demo.png)

# Stable-Diffusion-v2.1: Optimized for Mobile Deployment
## State-of-the-art generative AI model used to generate detailed images conditioned on text descriptions


Generates high resolution images from text prompts using a latent diffusion model. This model uses CLIP ViT-L/14 as text encoder, U-Net based latent denoising, and VAE based decoder to generate the final image.

This model is an implementation of Stable-Diffusion-v2.1 found [here](https://github.com/CompVis/stable-diffusion/tree/main).


This repository provides scripts to run Stable-Diffusion-v2.1 on Qualcomm® devices.
More details on model performance across various devices, can be found
[here](https://aihub.qualcomm.com/models/stable_diffusion_v2_1).


### Model Details

- **Model Type:** Model_use_case.image_generation
- **Model Stats:**
  - Input: Text prompt to generate image

| Model | Precision | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Primary Compute Unit | Target Model
|---|---|---|---|---|---|---|---|---|
| text_encoder | w8a16 | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | QNN_CONTEXT_BINARY | 18.499 ms | 0 - 8 MB | NPU | Use Export Script |
| text_encoder | w8a16 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN_CONTEXT_BINARY | 8.205 ms | 0 - 3 MB | NPU | Use Export Script |
| text_encoder | w8a16 | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN_CONTEXT_BINARY | 8.377 ms | 0 - 9 MB | NPU | Use Export Script |
| text_encoder | w8a16 | SA7255P ADP | Qualcomm® SA7255P | QNN_CONTEXT_BINARY | 18.499 ms | 0 - 8 MB | NPU | Use Export Script |
| text_encoder | w8a16 | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | QNN_CONTEXT_BINARY | 8.366 ms | 0 - 2 MB | NPU | Use Export Script |
| text_encoder | w8a16 | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | QNN_CONTEXT_BINARY | 8.216 ms | 0 - 2 MB | NPU | Use Export Script |
| text_encoder | w8a16 | SA8775P ADP | Qualcomm® SA8775P | QNN_CONTEXT_BINARY | 8.377 ms | 0 - 9 MB | NPU | Use Export Script |
| text_encoder | w8a16 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | QNN_CONTEXT_BINARY | 8.285 ms | 0 - 7 MB | NPU | Use Export Script |
| text_encoder | w8a16 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | PRECOMPILED_QNN_ONNX | 8.141 ms | 0 - 387 MB | NPU | Use Export Script |
| text_encoder | w8a16 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN_CONTEXT_BINARY | 5.601 ms | 0 - 18 MB | NPU | Use Export Script |
| text_encoder | w8a16 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | PRECOMPILED_QNN_ONNX | 5.404 ms | 0 - 19 MB | NPU | Use Export Script |
| text_encoder | w8a16 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | QNN_CONTEXT_BINARY | 4.56 ms | 0 - 15 MB | NPU | Use Export Script |
| text_encoder | w8a16 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | PRECOMPILED_QNN_ONNX | 5.312 ms | 0 - 14 MB | NPU | Use Export Script |
| text_encoder | w8a16 | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN_CONTEXT_BINARY | 8.652 ms | 0 - 0 MB | NPU | Use Export Script |
| text_encoder | w8a16 | Snapdragon X Elite CRD | Snapdragon® X Elite | PRECOMPILED_QNN_ONNX | 8.311 ms | 378 - 378 MB | NPU | Use Export Script |
| unet | w8a16 | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | QNN_CONTEXT_BINARY | 232.583 ms | 0 - 8 MB | NPU | Use Export Script |
| unet | w8a16 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN_CONTEXT_BINARY | 93.286 ms | 0 - 2 MB | NPU | Use Export Script |
| unet | w8a16 | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN_CONTEXT_BINARY | 87.78 ms | 0 - 9 MB | NPU | Use Export Script |
| unet | w8a16 | SA7255P ADP | Qualcomm® SA7255P | QNN_CONTEXT_BINARY | 232.583 ms | 0 - 8 MB | NPU | Use Export Script |
| unet | w8a16 | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | QNN_CONTEXT_BINARY | 93.785 ms | 0 - 3 MB | NPU | Use Export Script |
| unet | w8a16 | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | QNN_CONTEXT_BINARY | 93.873 ms | 0 - 3 MB | NPU | Use Export Script |
| unet | w8a16 | SA8775P ADP | Qualcomm® SA8775P | QNN_CONTEXT_BINARY | 87.78 ms | 0 - 9 MB | NPU | Use Export Script |
| unet | w8a16 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | QNN_CONTEXT_BINARY | 93.717 ms | 0 - 7 MB | NPU | Use Export Script |
| unet | w8a16 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | PRECOMPILED_QNN_ONNX | 95.033 ms | 0 - 898 MB | NPU | Use Export Script |
| unet | w8a16 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN_CONTEXT_BINARY | 66.248 ms | 0 - 18 MB | NPU | Use Export Script |
| unet | w8a16 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | PRECOMPILED_QNN_ONNX | 67.516 ms | 0 - 14 MB | NPU | Use Export Script |
| unet | w8a16 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | QNN_CONTEXT_BINARY | 58.258 ms | 0 - 14 MB | NPU | Use Export Script |
| unet | w8a16 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | PRECOMPILED_QNN_ONNX | 58.617 ms | 0 - 19 MB | NPU | Use Export Script |
| unet | w8a16 | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN_CONTEXT_BINARY | 95.326 ms | 0 - 0 MB | NPU | Use Export Script |
| unet | w8a16 | Snapdragon X Elite CRD | Snapdragon® X Elite | PRECOMPILED_QNN_ONNX | 96.279 ms | 843 - 843 MB | NPU | Use Export Script |
| vae | w8a16 | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | QNN_CONTEXT_BINARY | 719.113 ms | 0 - 9 MB | NPU | Use Export Script |
| vae | w8a16 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN_CONTEXT_BINARY | 270.059 ms | 1 - 3 MB | NPU | Use Export Script |
| vae | w8a16 | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN_CONTEXT_BINARY | 249.046 ms | 0 - 10 MB | NPU | Use Export Script |
| vae | w8a16 | SA7255P ADP | Qualcomm® SA7255P | QNN_CONTEXT_BINARY | 719.113 ms | 0 - 9 MB | NPU | Use Export Script |
| vae | w8a16 | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | QNN_CONTEXT_BINARY | 271.52 ms | 0 - 3 MB | NPU | Use Export Script |
| vae | w8a16 | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | QNN_CONTEXT_BINARY | 271.625 ms | 0 - 4 MB | NPU | Use Export Script |
| vae | w8a16 | SA8775P ADP | Qualcomm® SA8775P | QNN_CONTEXT_BINARY | 249.046 ms | 0 - 10 MB | NPU | Use Export Script |
| vae | w8a16 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | QNN_CONTEXT_BINARY | 269.852 ms | 0 - 2 MB | NPU | Use Export Script |
| vae | w8a16 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | PRECOMPILED_QNN_ONNX | 274.742 ms | 0 - 68 MB | NPU | Use Export Script |
| vae | w8a16 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN_CONTEXT_BINARY | 202.714 ms | 0 - 21 MB | NPU | Use Export Script |
| vae | w8a16 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | PRECOMPILED_QNN_ONNX | 203.279 ms | 3 - 22 MB | NPU | Use Export Script |
| vae | w8a16 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | QNN_CONTEXT_BINARY | 175.114 ms | 0 - 14 MB | NPU | Use Export Script |
| vae | w8a16 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | PRECOMPILED_QNN_ONNX | 174.448 ms | 3 - 17 MB | NPU | Use Export Script |
| vae | w8a16 | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN_CONTEXT_BINARY | 265.137 ms | 0 - 0 MB | NPU | Use Export Script |
| vae | w8a16 | Snapdragon X Elite CRD | Snapdragon® X Elite | PRECOMPILED_QNN_ONNX | 264.748 ms | 62 - 62 MB | NPU | Use Export Script |

## Deploy to Snapdragon X Elite NPU
Please follow the [Stable Diffusion Windows App](https://github.com/quic/ai-hub-apps/tree/main/apps/windows/python/StableDiffusion) tutorial to quantize model with custom weights.

## Quantize and Deploy Your Own Fine-Tuned Stable Diffusion

Please follow the [Quantize Stable Diffusion]({REPOSITORY_URL}/tutorials/stable_diffusion/quantize_stable_diffusion.md) tutorial to quantize model with custom weights.



## Installation


Install the package via pip:
```bash
pip install "qai-hub-models[stable-diffusion-v2-1]"
```


## Configure Qualcomm® AI Hub to run this model on a cloud-hosted device

Sign-in to [Qualcomm® AI Hub](https://app.aihub.qualcomm.com/) with your
Qualcomm® ID. Once signed in navigate to `Account -> Settings -> API Token`.

With this API token, you can configure your client to run models on the cloud
hosted devices.
```bash
qai-hub configure --api_token API_TOKEN
```
Navigate to [docs](https://app.aihub.qualcomm.com/docs/) for more information.



## Demo off target

The package contains a simple end-to-end demo that downloads pre-trained
weights and runs this model on a sample input.

```bash
python -m qai_hub_models.models.stable_diffusion_v2_1.demo
```

The above demo runs a reference implementation of pre-processing, model
inference, and post processing.

**NOTE**: If you want running in a Jupyter Notebook or Google Colab like
environment, please add the following to your cell (instead of the above).
```
%run -m qai_hub_models.models.stable_diffusion_v2_1.demo
```


### Run model on a cloud-hosted device

In addition to the demo, you can also run the model on a cloud-hosted Qualcomm®
device. This script does the following:
* Performance check on-device on a cloud-hosted device
* Downloads compiled assets that can be deployed on-device for Android.
* Accuracy check between PyTorch and on-device outputs.

```bash
python -m qai_hub_models.models.stable_diffusion_v2_1.export
```
```
Profiling Results
------------------------------------------------------------
text_encoder
Device                          : cs_8275 (ANDROID 14)                 
Runtime                         : QNN_CONTEXT_BINARY                   
Estimated inference time (ms)   : 18.5                                 
Estimated peak memory usage (MB): [0, 8]                               
Total # Ops                     : 788                                  
Compute Unit(s)                 : npu (788 ops) gpu (0 ops) cpu (0 ops)

------------------------------------------------------------
unet
Device                          : cs_8275 (ANDROID 14)                  
Runtime                         : QNN_CONTEXT_BINARY                    
Estimated inference time (ms)   : 232.6                                 
Estimated peak memory usage (MB): [0, 8]                                
Total # Ops                     : 5784                                  
Compute Unit(s)                 : npu (5784 ops) gpu (0 ops) cpu (0 ops)

------------------------------------------------------------
vae
Device                          : cs_8275 (ANDROID 14)                 
Runtime                         : QNN_CONTEXT_BINARY                   
Estimated inference time (ms)   : 719.1                                
Estimated peak memory usage (MB): [0, 9]                               
Total # Ops                     : 175                                  
Compute Unit(s)                 : npu (175 ops) gpu (0 ops) cpu (0 ops)
```





## Deploying compiled model to Android


The models can be deployed using multiple runtimes:
- TensorFlow Lite (`.tflite` export): [This
  tutorial](https://www.tensorflow.org/lite/android/quickstart) provides a
  guide to deploy the .tflite model in an Android application.


- QNN (`.so` export ): This [sample
  app](https://docs.qualcomm.com/bundle/publicresource/topics/80-63442-50/sample_app.html)
provides instructions on how to use the `.so` shared library  in an Android application.


## View on Qualcomm® AI Hub
Get more details on Stable-Diffusion-v2.1's performance across various devices [here](https://aihub.qualcomm.com/models/stable_diffusion_v2_1).
Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)


## License
* The license for the original implementation of Stable-Diffusion-v2.1 can be found
  [here](https://github.com/CompVis/stable-diffusion/blob/main/LICENSE).
* The license for the compiled assets for on-device deployment can be found [here](https://github.com/CompVis/stable-diffusion/blob/main/LICENSE)



## References
* [High-Resolution Image Synthesis with Latent Diffusion Models](https://arxiv.org/abs/2112.10752)
* [Source Model Implementation](https://github.com/CompVis/stable-diffusion/tree/main)



## Community
* Join [our AI Hub Slack community](https://aihub.qualcomm.com/community/slack) to collaborate, post questions and learn more about on-device AI.
* For questions or feedback please [reach out to us](mailto:[email protected]).