Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
@@ -1,11 +1,11 @@
|
|
1 |
---
|
2 |
library_name: pytorch
|
3 |
license: gpl-3.0
|
4 |
-
pipeline_tag: image-segmentation
|
5 |
tags:
|
6 |
- backbone
|
7 |
- real_time
|
8 |
- android
|
|
|
9 |
|
10 |
---
|
11 |
|
@@ -37,31 +37,35 @@ More details on model performance across various devices, can be found
|
|
37 |
|
38 |
| Model | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|
39 |
|---|---|---|---|---|---|---|---|---|
|
40 |
-
| Unet-Segmentation | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | TFLITE |
|
41 |
-
| Unet-Segmentation | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | QNN |
|
42 |
-
| Unet-Segmentation | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | ONNX |
|
43 |
-
| Unet-Segmentation | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | TFLITE |
|
44 |
-
| Unet-Segmentation | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | QNN |
|
45 |
-
| Unet-Segmentation | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | ONNX |
|
46 |
-
| Unet-Segmentation | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | TFLITE | 103.
|
47 |
-
| Unet-Segmentation | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | QNN | 103.
|
48 |
-
| Unet-Segmentation | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | ONNX |
|
49 |
-
| Unet-Segmentation |
|
50 |
-
| Unet-Segmentation |
|
51 |
-
| Unet-Segmentation |
|
52 |
-
| Unet-Segmentation |
|
53 |
-
| Unet-Segmentation |
|
54 |
-
| Unet-Segmentation |
|
55 |
-
| Unet-Segmentation |
|
56 |
-
| Unet-Segmentation |
|
57 |
-
| Unet-Segmentation |
|
58 |
-
| Unet-Segmentation |
|
59 |
-
| Unet-Segmentation |
|
60 |
-
| Unet-Segmentation |
|
61 |
-
| Unet-Segmentation |
|
62 |
-
| Unet-Segmentation |
|
63 |
-
| Unet-Segmentation |
|
64 |
-
| Unet-Segmentation |
|
|
|
|
|
|
|
|
|
65 |
|
66 |
|
67 |
|
@@ -125,8 +129,8 @@ Profiling Results
|
|
125 |
Unet-Segmentation
|
126 |
Device : Samsung Galaxy S23 (13)
|
127 |
Runtime : TFLITE
|
128 |
-
Estimated inference time (ms) :
|
129 |
-
Estimated peak memory usage (MB): [6,
|
130 |
Total # Ops : 32
|
131 |
Compute Unit(s) : NPU (32 ops)
|
132 |
```
|
|
|
1 |
---
|
2 |
library_name: pytorch
|
3 |
license: gpl-3.0
|
|
|
4 |
tags:
|
5 |
- backbone
|
6 |
- real_time
|
7 |
- android
|
8 |
+
pipeline_tag: image-segmentation
|
9 |
|
10 |
---
|
11 |
|
|
|
37 |
|
38 |
| Model | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|
39 |
|---|---|---|---|---|---|---|---|---|
|
40 |
+
| Unet-Segmentation | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | TFLITE | 157.613 ms | 6 - 461 MB | FP16 | NPU | [Unet-Segmentation.tflite](https://huggingface.co/qualcomm/Unet-Segmentation/blob/main/Unet-Segmentation.tflite) |
|
41 |
+
| Unet-Segmentation | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | QNN | 138.32 ms | 10 - 12 MB | FP16 | NPU | [Unet-Segmentation.so](https://huggingface.co/qualcomm/Unet-Segmentation/blob/main/Unet-Segmentation.so) |
|
42 |
+
| Unet-Segmentation | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | ONNX | 162.304 ms | 14 - 196 MB | FP16 | NPU | [Unet-Segmentation.onnx](https://huggingface.co/qualcomm/Unet-Segmentation/blob/main/Unet-Segmentation.onnx) |
|
43 |
+
| Unet-Segmentation | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | TFLITE | 112.142 ms | 6 - 93 MB | FP16 | NPU | [Unet-Segmentation.tflite](https://huggingface.co/qualcomm/Unet-Segmentation/blob/main/Unet-Segmentation.tflite) |
|
44 |
+
| Unet-Segmentation | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | QNN | 103.501 ms | 9 - 25 MB | FP16 | NPU | [Unet-Segmentation.so](https://huggingface.co/qualcomm/Unet-Segmentation/blob/main/Unet-Segmentation.so) |
|
45 |
+
| Unet-Segmentation | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | ONNX | 114.299 ms | 21 - 114 MB | FP16 | NPU | [Unet-Segmentation.onnx](https://huggingface.co/qualcomm/Unet-Segmentation/blob/main/Unet-Segmentation.onnx) |
|
46 |
+
| Unet-Segmentation | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | TFLITE | 103.061 ms | 5 - 107 MB | FP16 | NPU | [Unet-Segmentation.tflite](https://huggingface.co/qualcomm/Unet-Segmentation/blob/main/Unet-Segmentation.tflite) |
|
47 |
+
| Unet-Segmentation | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | QNN | 103.632 ms | 0 - 102 MB | FP16 | NPU | Use Export Script |
|
48 |
+
| Unet-Segmentation | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | ONNX | 103.656 ms | 23 - 132 MB | FP16 | NPU | [Unet-Segmentation.onnx](https://huggingface.co/qualcomm/Unet-Segmentation/blob/main/Unet-Segmentation.onnx) |
|
49 |
+
| Unet-Segmentation | SA7255P ADP | SA7255P | TFLITE | 7407.341 ms | 2 - 99 MB | FP16 | NPU | [Unet-Segmentation.tflite](https://huggingface.co/qualcomm/Unet-Segmentation/blob/main/Unet-Segmentation.tflite) |
|
50 |
+
| Unet-Segmentation | SA7255P ADP | SA7255P | QNN | 7400.054 ms | 1 - 9 MB | FP16 | NPU | Use Export Script |
|
51 |
+
| Unet-Segmentation | SA8255 (Proxy) | SA8255P Proxy | TFLITE | 156.67 ms | 6 - 458 MB | FP16 | NPU | [Unet-Segmentation.tflite](https://huggingface.co/qualcomm/Unet-Segmentation/blob/main/Unet-Segmentation.tflite) |
|
52 |
+
| Unet-Segmentation | SA8255 (Proxy) | SA8255P Proxy | QNN | 143.398 ms | 9 - 12 MB | FP16 | NPU | Use Export Script |
|
53 |
+
| Unet-Segmentation | SA8295P ADP | SA8295P | TFLITE | 273.621 ms | 6 - 106 MB | FP16 | NPU | [Unet-Segmentation.tflite](https://huggingface.co/qualcomm/Unet-Segmentation/blob/main/Unet-Segmentation.tflite) |
|
54 |
+
| Unet-Segmentation | SA8295P ADP | SA8295P | QNN | 266.184 ms | 0 - 11 MB | FP16 | NPU | Use Export Script |
|
55 |
+
| Unet-Segmentation | SA8650 (Proxy) | SA8650P Proxy | TFLITE | 150.481 ms | 6 - 470 MB | FP16 | NPU | [Unet-Segmentation.tflite](https://huggingface.co/qualcomm/Unet-Segmentation/blob/main/Unet-Segmentation.tflite) |
|
56 |
+
| Unet-Segmentation | SA8650 (Proxy) | SA8650P Proxy | QNN | 138.874 ms | 3 - 6 MB | FP16 | NPU | Use Export Script |
|
57 |
+
| Unet-Segmentation | SA8775P ADP | SA8775P | TFLITE | 303.234 ms | 6 - 104 MB | FP16 | NPU | [Unet-Segmentation.tflite](https://huggingface.co/qualcomm/Unet-Segmentation/blob/main/Unet-Segmentation.tflite) |
|
58 |
+
| Unet-Segmentation | SA8775P ADP | SA8775P | QNN | 297.903 ms | 1 - 8 MB | FP16 | NPU | Use Export Script |
|
59 |
+
| Unet-Segmentation | QCS8275 (Proxy) | QCS8275 Proxy | TFLITE | 7407.341 ms | 2 - 99 MB | FP16 | NPU | [Unet-Segmentation.tflite](https://huggingface.co/qualcomm/Unet-Segmentation/blob/main/Unet-Segmentation.tflite) |
|
60 |
+
| Unet-Segmentation | QCS8275 (Proxy) | QCS8275 Proxy | QNN | 7400.054 ms | 1 - 9 MB | FP16 | NPU | Use Export Script |
|
61 |
+
| Unet-Segmentation | QCS8550 (Proxy) | QCS8550 Proxy | TFLITE | 160.912 ms | 6 - 457 MB | FP16 | NPU | [Unet-Segmentation.tflite](https://huggingface.co/qualcomm/Unet-Segmentation/blob/main/Unet-Segmentation.tflite) |
|
62 |
+
| Unet-Segmentation | QCS8550 (Proxy) | QCS8550 Proxy | QNN | 147.648 ms | 10 - 12 MB | FP16 | NPU | Use Export Script |
|
63 |
+
| Unet-Segmentation | QCS9075 (Proxy) | QCS9075 Proxy | TFLITE | 303.234 ms | 6 - 104 MB | FP16 | NPU | [Unet-Segmentation.tflite](https://huggingface.co/qualcomm/Unet-Segmentation/blob/main/Unet-Segmentation.tflite) |
|
64 |
+
| Unet-Segmentation | QCS9075 (Proxy) | QCS9075 Proxy | QNN | 297.903 ms | 1 - 8 MB | FP16 | NPU | Use Export Script |
|
65 |
+
| Unet-Segmentation | QCS8450 (Proxy) | QCS8450 Proxy | TFLITE | 285.825 ms | 6 - 97 MB | FP16 | NPU | [Unet-Segmentation.tflite](https://huggingface.co/qualcomm/Unet-Segmentation/blob/main/Unet-Segmentation.tflite) |
|
66 |
+
| Unet-Segmentation | QCS8450 (Proxy) | QCS8450 Proxy | QNN | 277.521 ms | 9 - 98 MB | FP16 | NPU | Use Export Script |
|
67 |
+
| Unet-Segmentation | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN | 135.79 ms | 9 - 9 MB | FP16 | NPU | Use Export Script |
|
68 |
+
| Unet-Segmentation | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 147.547 ms | 54 - 54 MB | FP16 | NPU | [Unet-Segmentation.onnx](https://huggingface.co/qualcomm/Unet-Segmentation/blob/main/Unet-Segmentation.onnx) |
|
69 |
|
70 |
|
71 |
|
|
|
129 |
Unet-Segmentation
|
130 |
Device : Samsung Galaxy S23 (13)
|
131 |
Runtime : TFLITE
|
132 |
+
Estimated inference time (ms) : 157.6
|
133 |
+
Estimated peak memory usage (MB): [6, 461]
|
134 |
Total # Ops : 32
|
135 |
Compute Unit(s) : NPU (32 ops)
|
136 |
```
|