--- library_name: pytorch license: mit pipeline_tag: automatic-speech-recognition tags: - foundation - android --- ![](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/models/whisper_tiny_en/web-assets/model_demo.png) # Whisper-Tiny-En: Optimized for Mobile Deployment ## Automatic speech recognition (ASR) model for English transcription as well as translation OpenAI’s Whisper ASR (Automatic Speech Recognition) model is a state-of-the-art system designed for transcribing spoken language into written text. It exhibits robust performance in realistic, noisy environments, making it highly reliable for real-world applications. Specifically, it excels in long-form transcription, capable of accurately transcribing audio clips up to 30 seconds long. Time to the first token is the encoder's latency, while time to each additional token is decoder's latency, where we assume a mean decoded length specified below. This model is an implementation of Whisper-Tiny-En found [here](https://github.com/openai/whisper/tree/main). This repository provides scripts to run Whisper-Tiny-En on Qualcomm® devices. More details on model performance across various devices, can be found [here](https://aihub.qualcomm.com/models/whisper_tiny_en). ### Model Details - **Model Type:** Speech recognition - **Model Stats:** - Model checkpoint: tiny.en - Input resolution: 80x3000 (30 seconds audio) - Mean decoded sequence length: 112 tokens - Number of parameters (WhisperEncoder): 9.39M - Model size (WhisperEncoder): 35.9 MB - Number of parameters (WhisperDecoder): 28.2M - Model size (WhisperDecoder): 108 MB | Model | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model |---|---|---|---|---|---|---|---|---| | WhisperDecoder | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | TFLITE | 3.931 ms | 4 - 42 MB | FP16 | NPU | [Whisper-Tiny-En.tflite](https://huggingface.co/qualcomm/Whisper-Tiny-En/blob/main/WhisperDecoder.tflite) | | WhisperDecoder | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | QNN | 2.387 ms | 6 - 76 MB | FP16 | NPU | [Whisper-Tiny-En.so](https://huggingface.co/qualcomm/Whisper-Tiny-En/blob/main/WhisperDecoder.so) | | WhisperDecoder | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | TFLITE | 3.056 ms | 0 - 62 MB | FP16 | NPU | [Whisper-Tiny-En.tflite](https://huggingface.co/qualcomm/Whisper-Tiny-En/blob/main/WhisperDecoder.tflite) | | WhisperDecoder | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | QNN | 1.779 ms | 4 - 48 MB | FP16 | NPU | [Whisper-Tiny-En.so](https://huggingface.co/qualcomm/Whisper-Tiny-En/blob/main/WhisperDecoder.so) | | WhisperDecoder | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | TFLITE | 2.61 ms | 2 - 59 MB | FP16 | NPU | [Whisper-Tiny-En.tflite](https://huggingface.co/qualcomm/Whisper-Tiny-En/blob/main/WhisperDecoder.tflite) | | WhisperDecoder | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | QNN | 1.425 ms | 0 - 42 MB | FP16 | NPU | Use Export Script | | WhisperDecoder | QCS8550 (Proxy) | QCS8550 Proxy | TFLITE | 3.987 ms | 3 - 39 MB | FP16 | NPU | [Whisper-Tiny-En.tflite](https://huggingface.co/qualcomm/Whisper-Tiny-En/blob/main/WhisperDecoder.tflite) | | WhisperDecoder | QCS8550 (Proxy) | QCS8550 Proxy | QNN | 2.337 ms | 10 - 12 MB | FP16 | NPU | Use Export Script | | WhisperDecoder | SA7255P ADP | SA7255P | TFLITE | 18.219 ms | 3 - 57 MB | FP16 | NPU | [Whisper-Tiny-En.tflite](https://huggingface.co/qualcomm/Whisper-Tiny-En/blob/main/WhisperDecoder.tflite) | | WhisperDecoder | SA7255P ADP | SA7255P | QNN | 15.609 ms | 9 - 18 MB | FP16 | NPU | Use Export Script | | WhisperDecoder | SA8255 (Proxy) | SA8255P Proxy | TFLITE | 4.113 ms | 3 - 41 MB | FP16 | NPU | [Whisper-Tiny-En.tflite](https://huggingface.co/qualcomm/Whisper-Tiny-En/blob/main/WhisperDecoder.tflite) | | WhisperDecoder | SA8255 (Proxy) | SA8255P Proxy | QNN | 2.499 ms | 10 - 13 MB | FP16 | NPU | Use Export Script | | WhisperDecoder | SA8295P ADP | SA8295P | TFLITE | 5.206 ms | 2 - 56 MB | FP16 | NPU | [Whisper-Tiny-En.tflite](https://huggingface.co/qualcomm/Whisper-Tiny-En/blob/main/WhisperDecoder.tflite) | | WhisperDecoder | SA8295P ADP | SA8295P | QNN | 3.37 ms | 3 - 17 MB | FP16 | NPU | Use Export Script | | WhisperDecoder | SA8650 (Proxy) | SA8650P Proxy | TFLITE | 4.048 ms | 3 - 41 MB | FP16 | NPU | [Whisper-Tiny-En.tflite](https://huggingface.co/qualcomm/Whisper-Tiny-En/blob/main/WhisperDecoder.tflite) | | WhisperDecoder | SA8650 (Proxy) | SA8650P Proxy | QNN | 2.393 ms | 10 - 13 MB | FP16 | NPU | Use Export Script | | WhisperDecoder | SA8775P ADP | SA8775P | TFLITE | 5.318 ms | 3 - 57 MB | FP16 | NPU | [Whisper-Tiny-En.tflite](https://huggingface.co/qualcomm/Whisper-Tiny-En/blob/main/WhisperDecoder.tflite) | | WhisperDecoder | SA8775P ADP | SA8775P | QNN | 3.536 ms | 9 - 19 MB | FP16 | NPU | Use Export Script | | WhisperDecoder | QCS8450 (Proxy) | QCS8450 Proxy | TFLITE | 4.755 ms | 3 - 59 MB | FP16 | NPU | [Whisper-Tiny-En.tflite](https://huggingface.co/qualcomm/Whisper-Tiny-En/blob/main/WhisperDecoder.tflite) | | WhisperDecoder | QCS8450 (Proxy) | QCS8450 Proxy | QNN | 2.814 ms | 10 - 58 MB | FP16 | NPU | Use Export Script | | WhisperDecoder | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN | 2.372 ms | 10 - 10 MB | FP16 | NPU | Use Export Script | | WhisperEncoder | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | TFLITE | 101.153 ms | 20 - 69 MB | FP16 | GPU | [Whisper-Tiny-En.tflite](https://huggingface.co/qualcomm/Whisper-Tiny-En/blob/main/WhisperEncoder.tflite) | | WhisperEncoder | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | QNN | 135.122 ms | 0 - 51 MB | FP16 | NPU | [Whisper-Tiny-En.so](https://huggingface.co/qualcomm/Whisper-Tiny-En/blob/main/WhisperEncoder.so) | | WhisperEncoder | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | TFLITE | 82.296 ms | 18 - 55 MB | FP16 | GPU | [Whisper-Tiny-En.tflite](https://huggingface.co/qualcomm/Whisper-Tiny-En/blob/main/WhisperEncoder.tflite) | | WhisperEncoder | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | QNN | 108.886 ms | 0 - 191 MB | FP16 | NPU | [Whisper-Tiny-En.so](https://huggingface.co/qualcomm/Whisper-Tiny-En/blob/main/WhisperEncoder.so) | | WhisperEncoder | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | TFLITE | 71.468 ms | 20 - 44 MB | FP16 | GPU | [Whisper-Tiny-En.tflite](https://huggingface.co/qualcomm/Whisper-Tiny-En/blob/main/WhisperEncoder.tflite) | | WhisperEncoder | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | QNN | 89.444 ms | 0 - 195 MB | FP16 | NPU | Use Export Script | | WhisperEncoder | QCS8550 (Proxy) | QCS8550 Proxy | TFLITE | 102.293 ms | 14 - 61 MB | FP16 | GPU | [Whisper-Tiny-En.tflite](https://huggingface.co/qualcomm/Whisper-Tiny-En/blob/main/WhisperEncoder.tflite) | | WhisperEncoder | QCS8550 (Proxy) | QCS8550 Proxy | QNN | 105.262 ms | 0 - 3 MB | FP16 | NPU | Use Export Script | | WhisperEncoder | SA7255P ADP | SA7255P | TFLITE | 522.027 ms | 20 - 43 MB | FP16 | GPU | [Whisper-Tiny-En.tflite](https://huggingface.co/qualcomm/Whisper-Tiny-En/blob/main/WhisperEncoder.tflite) | | WhisperEncoder | SA7255P ADP | SA7255P | QNN | 464.37 ms | 1 - 9 MB | FP16 | NPU | Use Export Script | | WhisperEncoder | SA8255 (Proxy) | SA8255P Proxy | TFLITE | 103.025 ms | 20 - 69 MB | FP16 | GPU | [Whisper-Tiny-En.tflite](https://huggingface.co/qualcomm/Whisper-Tiny-En/blob/main/WhisperEncoder.tflite) | | WhisperEncoder | SA8255 (Proxy) | SA8255P Proxy | QNN | 105.663 ms | 1 - 3 MB | FP16 | NPU | Use Export Script | | WhisperEncoder | SA8295P ADP | SA8295P | TFLITE | 107.129 ms | 21 - 50 MB | FP16 | GPU | [Whisper-Tiny-En.tflite](https://huggingface.co/qualcomm/Whisper-Tiny-En/blob/main/WhisperEncoder.tflite) | | WhisperEncoder | SA8295P ADP | SA8295P | QNN | 127.987 ms | 1 - 15 MB | FP16 | NPU | Use Export Script | | WhisperEncoder | SA8650 (Proxy) | SA8650P Proxy | TFLITE | 100.793 ms | 20 - 69 MB | FP16 | GPU | [Whisper-Tiny-En.tflite](https://huggingface.co/qualcomm/Whisper-Tiny-En/blob/main/WhisperEncoder.tflite) | | WhisperEncoder | SA8650 (Proxy) | SA8650P Proxy | QNN | 106.469 ms | 1 - 3 MB | FP16 | NPU | Use Export Script | | WhisperEncoder | SA8775P ADP | SA8775P | TFLITE | 179.876 ms | 20 - 42 MB | FP16 | GPU | [Whisper-Tiny-En.tflite](https://huggingface.co/qualcomm/Whisper-Tiny-En/blob/main/WhisperEncoder.tflite) | | WhisperEncoder | SA8775P ADP | SA8775P | QNN | 119.73 ms | 1 - 11 MB | FP16 | NPU | Use Export Script | | WhisperEncoder | QCS8450 (Proxy) | QCS8450 Proxy | TFLITE | 143.868 ms | 20 - 64 MB | FP16 | GPU | [Whisper-Tiny-En.tflite](https://huggingface.co/qualcomm/Whisper-Tiny-En/blob/main/WhisperEncoder.tflite) | | WhisperEncoder | QCS8450 (Proxy) | QCS8450 Proxy | QNN | 167.53 ms | 0 - 194 MB | FP16 | NPU | Use Export Script | | WhisperEncoder | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN | 97.829 ms | 0 - 0 MB | FP16 | NPU | Use Export Script | ## Installation This model can be installed as a Python package via pip. ```bash pip install "qai-hub-models[whisper_tiny_en]" ``` ## Configure Qualcomm® AI Hub to run this model on a cloud-hosted device Sign-in to [Qualcomm® AI Hub](https://app.aihub.qualcomm.com/) with your Qualcomm® ID. Once signed in navigate to `Account -> Settings -> API Token`. With this API token, you can configure your client to run models on the cloud hosted devices. ```bash qai-hub configure --api_token API_TOKEN ``` Navigate to [docs](https://app.aihub.qualcomm.com/docs/) for more information. ## Demo off target The package contains a simple end-to-end demo that downloads pre-trained weights and runs this model on a sample input. ```bash python -m qai_hub_models.models.whisper_tiny_en.demo ``` The above demo runs a reference implementation of pre-processing, model inference, and post processing. **NOTE**: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above). ``` %run -m qai_hub_models.models.whisper_tiny_en.demo ``` ### Run model on a cloud-hosted device In addition to the demo, you can also run the model on a cloud-hosted Qualcomm® device. This script does the following: * Performance check on-device on a cloud-hosted device * Downloads compiled assets that can be deployed on-device for Android. * Accuracy check between PyTorch and on-device outputs. ```bash python -m qai_hub_models.models.whisper_tiny_en.export ``` ``` Profiling Results ------------------------------------------------------------ WhisperDecoder Device : Samsung Galaxy S23 (13) Runtime : TFLITE Estimated inference time (ms) : 3.9 Estimated peak memory usage (MB): [4, 42] Total # Ops : 557 Compute Unit(s) : NPU (557 ops) ------------------------------------------------------------ WhisperEncoder Device : Samsung Galaxy S23 (13) Runtime : TFLITE Estimated inference time (ms) : 101.2 Estimated peak memory usage (MB): [20, 69] Total # Ops : 271 Compute Unit(s) : GPU (260 ops) CPU (11 ops) ``` ## How does this work? This [export script](https://aihub.qualcomm.com/models/whisper_tiny_en/qai_hub_models/models/Whisper-Tiny-En/export.py) leverages [Qualcomm® AI Hub](https://aihub.qualcomm.com/) to optimize, validate, and deploy this model on-device. Lets go through each step below in detail: Step 1: **Compile model for on-device deployment** To compile a PyTorch model for on-device deployment, we first trace the model in memory using the `jit.trace` and then call the `submit_compile_job` API. ```python import torch import qai_hub as hub from qai_hub_models.models.whisper_tiny_en import Model # Load the model model = Model.from_pretrained() decoder_model = model.decoder encoder_model = model.encoder # Device device = hub.Device("Samsung Galaxy S23") # Trace model decoder_input_shape = decoder_model.get_input_spec() decoder_sample_inputs = decoder_model.sample_inputs() traced_decoder_model = torch.jit.trace(decoder_model, [torch.tensor(data[0]) for _, data in decoder_sample_inputs.items()]) # Compile model on a specific device decoder_compile_job = hub.submit_compile_job( model=traced_decoder_model , device=device, input_specs=decoder_model.get_input_spec(), ) # Get target model to run on-device decoder_target_model = decoder_compile_job.get_target_model() # Trace model encoder_input_shape = encoder_model.get_input_spec() encoder_sample_inputs = encoder_model.sample_inputs() traced_encoder_model = torch.jit.trace(encoder_model, [torch.tensor(data[0]) for _, data in encoder_sample_inputs.items()]) # Compile model on a specific device encoder_compile_job = hub.submit_compile_job( model=traced_encoder_model , device=device, input_specs=encoder_model.get_input_spec(), ) # Get target model to run on-device encoder_target_model = encoder_compile_job.get_target_model() ``` Step 2: **Performance profiling on cloud-hosted device** After compiling models from step 1. Models can be profiled model on-device using the `target_model`. Note that this scripts runs the model on a device automatically provisioned in the cloud. Once the job is submitted, you can navigate to a provided job URL to view a variety of on-device performance metrics. ```python decoder_profile_job = hub.submit_profile_job( model=decoder_target_model, device=device, ) encoder_profile_job = hub.submit_profile_job( model=encoder_target_model, device=device, ) ``` Step 3: **Verify on-device accuracy** To verify the accuracy of the model on-device, you can run on-device inference on sample input data on the same cloud hosted device. ```python decoder_input_data = decoder_model.sample_inputs() decoder_inference_job = hub.submit_inference_job( model=decoder_target_model, device=device, inputs=decoder_input_data, ) decoder_inference_job.download_output_data() encoder_input_data = encoder_model.sample_inputs() encoder_inference_job = hub.submit_inference_job( model=encoder_target_model, device=device, inputs=encoder_input_data, ) encoder_inference_job.download_output_data() ``` With the output of the model, you can compute like PSNR, relative errors or spot check the output with expected output. **Note**: This on-device profiling and inference requires access to Qualcomm® AI Hub. [Sign up for access](https://myaccount.qualcomm.com/signup). ## Deploying compiled model to Android The models can be deployed using multiple runtimes: - TensorFlow Lite (`.tflite` export): [This tutorial](https://www.tensorflow.org/lite/android/quickstart) provides a guide to deploy the .tflite model in an Android application. - QNN (`.so` export ): This [sample app](https://docs.qualcomm.com/bundle/publicresource/topics/80-63442-50/sample_app.html) provides instructions on how to use the `.so` shared library in an Android application. ## View on Qualcomm® AI Hub Get more details on Whisper-Tiny-En's performance across various devices [here](https://aihub.qualcomm.com/models/whisper_tiny_en). Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/) ## License * The license for the original implementation of Whisper-Tiny-En can be found [here](https://github.com/openai/whisper/blob/main/LICENSE). * The license for the compiled assets for on-device deployment can be found [here](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf) ## References * [Robust Speech Recognition via Large-Scale Weak Supervision](https://cdn.openai.com/papers/whisper.pdf) * [Source Model Implementation](https://github.com/openai/whisper/tree/main) ## Community * Join [our AI Hub Slack community](https://aihub.qualcomm.com/community/slack) to collaborate, post questions and learn more about on-device AI. * For questions or feedback please [reach out to us](mailto:ai-hub-support@qti.qualcomm.com).