File size: 18,040 Bytes
96531c5 5130323 96531c5 fbc84ae 96531c5 85bce41 96531c5 05aa505 85bce41 96531c5 6507118 96531c5 1277a33 01cde09 0ec5bc8 1277a33 6507118 8f9afb6 450b98f 38d5887 450b98f 38d5887 450b98f 38d5887 450b98f 38d5887 0ec5bc8 38d5887 1277a33 96531c5 8a76801 96531c5 77a8192 8f9afb6 6507118 450b98f f2e13b5 6507118 77a8192 1277a33 96531c5 1277a33 96531c5 3f73005 96531c5 3f73005 96531c5 8a76801 96531c5 3f73005 96531c5 4c3b0cf 3bdbf30 96531c5 4c3b0cf 3bdbf30 96531c5 fbc84ae 96531c5 3bdbf30 f2e13b5 3bdbf30 f2e13b5 3bdbf30 1277a33 96531c5 8f9afb6 96531c5 8a76801 8f9afb6 96531c5 8f9afb6 96531c5 f8cd1cc 96531c5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 |
---
library_name: pytorch
license: other
tags:
- android
pipeline_tag: image-to-image
---

# XLSR: Optimized for Mobile Deployment
## Upscale images in real time
XLSR is designed for lightweight real-time upscaling of images.
This model is an implementation of XLSR found [here](https://github.com/quic/aimet-model-zoo/tree/develop/aimet_zoo_torch/xlsr).
This repository provides scripts to run XLSR on Qualcomm® devices.
More details on model performance across various devices, can be found
[here](https://aihub.qualcomm.com/models/xlsr).
### Model Details
- **Model Type:** Model_use_case.super_resolution
- **Model Stats:**
- Model checkpoint: xlsr_3x_checkpoint
- Input resolution: 128x128
- Number of parameters: 28.0K
- Model size (float): 115 KB
- Model size (w8a8): 45.6 KB
| Model | Precision | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Primary Compute Unit | Target Model
|---|---|---|---|---|---|---|---|---|
| XLSR | float | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | TFLITE | 8.429 ms | 6 - 18 MB | NPU | [XLSR.tflite](https://huggingface.co/qualcomm/XLSR/blob/main/XLSR.tflite) |
| XLSR | float | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | QNN_DLC | 2.31 ms | 0 - 12 MB | NPU | [XLSR.dlc](https://huggingface.co/qualcomm/XLSR/blob/main/XLSR.dlc) |
| XLSR | float | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | TFLITE | 3.693 ms | 6 - 34 MB | NPU | [XLSR.tflite](https://huggingface.co/qualcomm/XLSR/blob/main/XLSR.tflite) |
| XLSR | float | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | QNN_DLC | 1.136 ms | 0 - 25 MB | NPU | [XLSR.dlc](https://huggingface.co/qualcomm/XLSR/blob/main/XLSR.dlc) |
| XLSR | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | TFLITE | 2.9 ms | 0 - 6 MB | NPU | [XLSR.tflite](https://huggingface.co/qualcomm/XLSR/blob/main/XLSR.tflite) |
| XLSR | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN_DLC | 0.865 ms | 0 - 6 MB | NPU | [XLSR.dlc](https://huggingface.co/qualcomm/XLSR/blob/main/XLSR.dlc) |
| XLSR | float | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | TFLITE | 4.152 ms | 6 - 20 MB | NPU | [XLSR.tflite](https://huggingface.co/qualcomm/XLSR/blob/main/XLSR.tflite) |
| XLSR | float | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN_DLC | 1.228 ms | 0 - 14 MB | NPU | [XLSR.dlc](https://huggingface.co/qualcomm/XLSR/blob/main/XLSR.dlc) |
| XLSR | float | SA7255P ADP | Qualcomm® SA7255P | TFLITE | 8.429 ms | 6 - 18 MB | NPU | [XLSR.tflite](https://huggingface.co/qualcomm/XLSR/blob/main/XLSR.tflite) |
| XLSR | float | SA7255P ADP | Qualcomm® SA7255P | QNN_DLC | 2.31 ms | 0 - 12 MB | NPU | [XLSR.dlc](https://huggingface.co/qualcomm/XLSR/blob/main/XLSR.dlc) |
| XLSR | float | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | TFLITE | 2.999 ms | 0 - 9 MB | NPU | [XLSR.tflite](https://huggingface.co/qualcomm/XLSR/blob/main/XLSR.tflite) |
| XLSR | float | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | QNN_DLC | 0.81 ms | 0 - 6 MB | NPU | [XLSR.dlc](https://huggingface.co/qualcomm/XLSR/blob/main/XLSR.dlc) |
| XLSR | float | SA8295P ADP | Qualcomm® SA8295P | TFLITE | 4.541 ms | 6 - 21 MB | NPU | [XLSR.tflite](https://huggingface.co/qualcomm/XLSR/blob/main/XLSR.tflite) |
| XLSR | float | SA8295P ADP | Qualcomm® SA8295P | QNN_DLC | 1.312 ms | 0 - 21 MB | NPU | [XLSR.dlc](https://huggingface.co/qualcomm/XLSR/blob/main/XLSR.dlc) |
| XLSR | float | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | TFLITE | 2.849 ms | 0 - 8 MB | NPU | [XLSR.tflite](https://huggingface.co/qualcomm/XLSR/blob/main/XLSR.tflite) |
| XLSR | float | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | QNN_DLC | 0.837 ms | 0 - 6 MB | NPU | [XLSR.dlc](https://huggingface.co/qualcomm/XLSR/blob/main/XLSR.dlc) |
| XLSR | float | SA8775P ADP | Qualcomm® SA8775P | TFLITE | 4.152 ms | 6 - 20 MB | NPU | [XLSR.tflite](https://huggingface.co/qualcomm/XLSR/blob/main/XLSR.tflite) |
| XLSR | float | SA8775P ADP | Qualcomm® SA8775P | QNN_DLC | 1.228 ms | 0 - 14 MB | NPU | [XLSR.dlc](https://huggingface.co/qualcomm/XLSR/blob/main/XLSR.dlc) |
| XLSR | float | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | TFLITE | 2.878 ms | 0 - 4 MB | NPU | [XLSR.tflite](https://huggingface.co/qualcomm/XLSR/blob/main/XLSR.tflite) |
| XLSR | float | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | QNN_DLC | 0.825 ms | 0 - 5 MB | NPU | [XLSR.dlc](https://huggingface.co/qualcomm/XLSR/blob/main/XLSR.dlc) |
| XLSR | float | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | ONNX | 1.36 ms | 0 - 7 MB | NPU | [XLSR.onnx](https://huggingface.co/qualcomm/XLSR/blob/main/XLSR.onnx) |
| XLSR | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | TFLITE | 1.95 ms | 0 - 25 MB | NPU | [XLSR.tflite](https://huggingface.co/qualcomm/XLSR/blob/main/XLSR.tflite) |
| XLSR | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN_DLC | 0.474 ms | 0 - 24 MB | NPU | [XLSR.dlc](https://huggingface.co/qualcomm/XLSR/blob/main/XLSR.dlc) |
| XLSR | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | ONNX | 0.833 ms | 0 - 24 MB | NPU | [XLSR.onnx](https://huggingface.co/qualcomm/XLSR/blob/main/XLSR.onnx) |
| XLSR | float | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | TFLITE | 2.169 ms | 0 - 15 MB | NPU | [XLSR.tflite](https://huggingface.co/qualcomm/XLSR/blob/main/XLSR.tflite) |
| XLSR | float | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | QNN_DLC | 0.528 ms | 0 - 18 MB | NPU | [XLSR.dlc](https://huggingface.co/qualcomm/XLSR/blob/main/XLSR.dlc) |
| XLSR | float | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | ONNX | 0.8 ms | 1 - 15 MB | NPU | [XLSR.onnx](https://huggingface.co/qualcomm/XLSR/blob/main/XLSR.onnx) |
| XLSR | float | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN_DLC | 0.919 ms | 0 - 0 MB | NPU | [XLSR.dlc](https://huggingface.co/qualcomm/XLSR/blob/main/XLSR.dlc) |
| XLSR | float | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 1.417 ms | 8 - 8 MB | NPU | [XLSR.onnx](https://huggingface.co/qualcomm/XLSR/blob/main/XLSR.onnx) |
| XLSR | w8a8 | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | TFLITE | 2.451 ms | 1 - 11 MB | NPU | [XLSR.tflite](https://huggingface.co/qualcomm/XLSR/blob/main/XLSR_w8a8.tflite) |
| XLSR | w8a8 | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | QNN_DLC | 0.9 ms | 0 - 11 MB | NPU | [XLSR.dlc](https://huggingface.co/qualcomm/XLSR/blob/main/XLSR_w8a8.dlc) |
| XLSR | w8a8 | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | TFLITE | 1.991 ms | 0 - 25 MB | NPU | [XLSR.tflite](https://huggingface.co/qualcomm/XLSR/blob/main/XLSR_w8a8.tflite) |
| XLSR | w8a8 | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | QNN_DLC | 0.524 ms | 0 - 24 MB | NPU | [XLSR.dlc](https://huggingface.co/qualcomm/XLSR/blob/main/XLSR_w8a8.dlc) |
| XLSR | w8a8 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | TFLITE | 1.035 ms | 0 - 16 MB | NPU | [XLSR.tflite](https://huggingface.co/qualcomm/XLSR/blob/main/XLSR_w8a8.tflite) |
| XLSR | w8a8 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN_DLC | 0.392 ms | 0 - 11 MB | NPU | [XLSR.dlc](https://huggingface.co/qualcomm/XLSR/blob/main/XLSR_w8a8.dlc) |
| XLSR | w8a8 | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | TFLITE | 1.755 ms | 0 - 11 MB | NPU | [XLSR.tflite](https://huggingface.co/qualcomm/XLSR/blob/main/XLSR_w8a8.tflite) |
| XLSR | w8a8 | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN_DLC | 0.603 ms | 0 - 13 MB | NPU | [XLSR.dlc](https://huggingface.co/qualcomm/XLSR/blob/main/XLSR_w8a8.dlc) |
| XLSR | w8a8 | RB3 Gen 2 (Proxy) | Qualcomm® QCS6490 (Proxy) | TFLITE | 2.104 ms | 0 - 15 MB | NPU | [XLSR.tflite](https://huggingface.co/qualcomm/XLSR/blob/main/XLSR_w8a8.tflite) |
| XLSR | w8a8 | RB3 Gen 2 (Proxy) | Qualcomm® QCS6490 (Proxy) | QNN_DLC | 1.105 ms | 0 - 15 MB | NPU | [XLSR.dlc](https://huggingface.co/qualcomm/XLSR/blob/main/XLSR_w8a8.dlc) |
| XLSR | w8a8 | RB5 (Proxy) | Qualcomm® QCS8250 (Proxy) | TFLITE | 15.922 ms | 4 - 14 MB | GPU | [XLSR.tflite](https://huggingface.co/qualcomm/XLSR/blob/main/XLSR_w8a8.tflite) |
| XLSR | w8a8 | SA7255P ADP | Qualcomm® SA7255P | TFLITE | 2.451 ms | 1 - 11 MB | NPU | [XLSR.tflite](https://huggingface.co/qualcomm/XLSR/blob/main/XLSR_w8a8.tflite) |
| XLSR | w8a8 | SA7255P ADP | Qualcomm® SA7255P | QNN_DLC | 0.9 ms | 0 - 11 MB | NPU | [XLSR.dlc](https://huggingface.co/qualcomm/XLSR/blob/main/XLSR_w8a8.dlc) |
| XLSR | w8a8 | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | TFLITE | 1.13 ms | 1 - 17 MB | NPU | [XLSR.tflite](https://huggingface.co/qualcomm/XLSR/blob/main/XLSR_w8a8.tflite) |
| XLSR | w8a8 | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | QNN_DLC | 0.388 ms | 0 - 3 MB | NPU | [XLSR.dlc](https://huggingface.co/qualcomm/XLSR/blob/main/XLSR_w8a8.dlc) |
| XLSR | w8a8 | SA8295P ADP | Qualcomm® SA8295P | TFLITE | 1.73 ms | 0 - 19 MB | NPU | [XLSR.tflite](https://huggingface.co/qualcomm/XLSR/blob/main/XLSR_w8a8.tflite) |
| XLSR | w8a8 | SA8295P ADP | Qualcomm® SA8295P | QNN_DLC | 0.744 ms | 0 - 14 MB | NPU | [XLSR.dlc](https://huggingface.co/qualcomm/XLSR/blob/main/XLSR_w8a8.dlc) |
| XLSR | w8a8 | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | TFLITE | 1.045 ms | 0 - 17 MB | NPU | [XLSR.tflite](https://huggingface.co/qualcomm/XLSR/blob/main/XLSR_w8a8.tflite) |
| XLSR | w8a8 | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | QNN_DLC | 0.414 ms | 0 - 11 MB | NPU | [XLSR.dlc](https://huggingface.co/qualcomm/XLSR/blob/main/XLSR_w8a8.dlc) |
| XLSR | w8a8 | SA8775P ADP | Qualcomm® SA8775P | TFLITE | 1.755 ms | 0 - 11 MB | NPU | [XLSR.tflite](https://huggingface.co/qualcomm/XLSR/blob/main/XLSR_w8a8.tflite) |
| XLSR | w8a8 | SA8775P ADP | Qualcomm® SA8775P | QNN_DLC | 0.603 ms | 0 - 13 MB | NPU | [XLSR.dlc](https://huggingface.co/qualcomm/XLSR/blob/main/XLSR_w8a8.dlc) |
| XLSR | w8a8 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | TFLITE | 1.038 ms | 0 - 17 MB | NPU | [XLSR.tflite](https://huggingface.co/qualcomm/XLSR/blob/main/XLSR_w8a8.tflite) |
| XLSR | w8a8 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | QNN_DLC | 0.406 ms | 0 - 10 MB | NPU | [XLSR.dlc](https://huggingface.co/qualcomm/XLSR/blob/main/XLSR_w8a8.dlc) |
| XLSR | w8a8 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | ONNX | 1.243 ms | 0 - 16 MB | NPU | [XLSR.onnx](https://huggingface.co/qualcomm/XLSR/blob/main/XLSR_w8a8.onnx) |
| XLSR | w8a8 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | TFLITE | 0.846 ms | 0 - 24 MB | NPU | [XLSR.tflite](https://huggingface.co/qualcomm/XLSR/blob/main/XLSR_w8a8.tflite) |
| XLSR | w8a8 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN_DLC | 0.24 ms | 0 - 25 MB | NPU | [XLSR.dlc](https://huggingface.co/qualcomm/XLSR/blob/main/XLSR_w8a8.dlc) |
| XLSR | w8a8 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | ONNX | 0.838 ms | 0 - 20 MB | NPU | [XLSR.onnx](https://huggingface.co/qualcomm/XLSR/blob/main/XLSR_w8a8.onnx) |
| XLSR | w8a8 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | TFLITE | 1.321 ms | 0 - 17 MB | NPU | [XLSR.tflite](https://huggingface.co/qualcomm/XLSR/blob/main/XLSR_w8a8.tflite) |
| XLSR | w8a8 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | QNN_DLC | 0.245 ms | 0 - 19 MB | NPU | [XLSR.dlc](https://huggingface.co/qualcomm/XLSR/blob/main/XLSR_w8a8.dlc) |
| XLSR | w8a8 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | ONNX | 0.81 ms | 3 - 22 MB | NPU | [XLSR.onnx](https://huggingface.co/qualcomm/XLSR/blob/main/XLSR_w8a8.onnx) |
| XLSR | w8a8 | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN_DLC | 0.526 ms | 5 - 5 MB | NPU | [XLSR.dlc](https://huggingface.co/qualcomm/XLSR/blob/main/XLSR_w8a8.dlc) |
| XLSR | w8a8 | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 1.322 ms | 9 - 9 MB | NPU | [XLSR.onnx](https://huggingface.co/qualcomm/XLSR/blob/main/XLSR_w8a8.onnx) |
## Installation
Install the package via pip:
```bash
pip install qai-hub-models
```
## Configure Qualcomm® AI Hub to run this model on a cloud-hosted device
Sign-in to [Qualcomm® AI Hub](https://app.aihub.qualcomm.com/) with your
Qualcomm® ID. Once signed in navigate to `Account -> Settings -> API Token`.
With this API token, you can configure your client to run models on the cloud
hosted devices.
```bash
qai-hub configure --api_token API_TOKEN
```
Navigate to [docs](https://app.aihub.qualcomm.com/docs/) for more information.
## Demo off target
The package contains a simple end-to-end demo that downloads pre-trained
weights and runs this model on a sample input.
```bash
python -m qai_hub_models.models.xlsr.demo
```
The above demo runs a reference implementation of pre-processing, model
inference, and post processing.
**NOTE**: If you want running in a Jupyter Notebook or Google Colab like
environment, please add the following to your cell (instead of the above).
```
%run -m qai_hub_models.models.xlsr.demo
```
### Run model on a cloud-hosted device
In addition to the demo, you can also run the model on a cloud-hosted Qualcomm®
device. This script does the following:
* Performance check on-device on a cloud-hosted device
* Downloads compiled assets that can be deployed on-device for Android.
* Accuracy check between PyTorch and on-device outputs.
```bash
python -m qai_hub_models.models.xlsr.export
```
```
Profiling Results
------------------------------------------------------------
XLSR
Device : cs_8275 (ANDROID 14)
Runtime : TFLITE
Estimated inference time (ms) : 8.4
Estimated peak memory usage (MB): [6, 18]
Total # Ops : 17
Compute Unit(s) : npu (14 ops) gpu (0 ops) cpu (3 ops)
```
## How does this work?
This [export script](https://aihub.qualcomm.com/models/xlsr/qai_hub_models/models/XLSR/export.py)
leverages [Qualcomm® AI Hub](https://aihub.qualcomm.com/) to optimize, validate, and deploy this model
on-device. Lets go through each step below in detail:
Step 1: **Compile model for on-device deployment**
To compile a PyTorch model for on-device deployment, we first trace the model
in memory using the `jit.trace` and then call the `submit_compile_job` API.
```python
import torch
import qai_hub as hub
from qai_hub_models.models.xlsr import Model
# Load the model
torch_model = Model.from_pretrained()
# Device
device = hub.Device("Samsung Galaxy S24")
# Trace model
input_shape = torch_model.get_input_spec()
sample_inputs = torch_model.sample_inputs()
pt_model = torch.jit.trace(torch_model, [torch.tensor(data[0]) for _, data in sample_inputs.items()])
# Compile model on a specific device
compile_job = hub.submit_compile_job(
model=pt_model,
device=device,
input_specs=torch_model.get_input_spec(),
)
# Get target model to run on-device
target_model = compile_job.get_target_model()
```
Step 2: **Performance profiling on cloud-hosted device**
After compiling models from step 1. Models can be profiled model on-device using the
`target_model`. Note that this scripts runs the model on a device automatically
provisioned in the cloud. Once the job is submitted, you can navigate to a
provided job URL to view a variety of on-device performance metrics.
```python
profile_job = hub.submit_profile_job(
model=target_model,
device=device,
)
```
Step 3: **Verify on-device accuracy**
To verify the accuracy of the model on-device, you can run on-device inference
on sample input data on the same cloud hosted device.
```python
input_data = torch_model.sample_inputs()
inference_job = hub.submit_inference_job(
model=target_model,
device=device,
inputs=input_data,
)
on_device_output = inference_job.download_output_data()
```
With the output of the model, you can compute like PSNR, relative errors or
spot check the output with expected output.
**Note**: This on-device profiling and inference requires access to Qualcomm®
AI Hub. [Sign up for access](https://myaccount.qualcomm.com/signup).
## Run demo on a cloud-hosted device
You can also run the demo on-device.
```bash
python -m qai_hub_models.models.xlsr.demo --eval-mode on-device
```
**NOTE**: If you want running in a Jupyter Notebook or Google Colab like
environment, please add the following to your cell (instead of the above).
```
%run -m qai_hub_models.models.xlsr.demo -- --eval-mode on-device
```
## Deploying compiled model to Android
The models can be deployed using multiple runtimes:
- TensorFlow Lite (`.tflite` export): [This
tutorial](https://www.tensorflow.org/lite/android/quickstart) provides a
guide to deploy the .tflite model in an Android application.
- QNN (`.so` export ): This [sample
app](https://docs.qualcomm.com/bundle/publicresource/topics/80-63442-50/sample_app.html)
provides instructions on how to use the `.so` shared library in an Android application.
## View on Qualcomm® AI Hub
Get more details on XLSR's performance across various devices [here](https://aihub.qualcomm.com/models/xlsr).
Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
## License
* The license for the original implementation of XLSR can be found
[here](https://github.com/quic/aimet-model-zoo/blob/develop/LICENSE.pdf).
* The license for the compiled assets for on-device deployment can be found [here](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf)
## References
* [Extremely Lightweight Quantization Robust Real-Time Single-Image Super Resolution for Mobile Devices](https://arxiv.org/abs/2105.10288)
* [Source Model Implementation](https://github.com/quic/aimet-model-zoo/tree/develop/aimet_zoo_torch/xlsr)
## Community
* Join [our AI Hub Slack community](https://aihub.qualcomm.com/community/slack) to collaborate, post questions and learn more about on-device AI.
* For questions or feedback please [reach out to us](mailto:[email protected]).
|