File size: 6,166 Bytes
4db1aba
 
 
 
 
 
afc5aa8
4db1aba
 
 
6970c9c
4db1aba
62960a8
9849dab
4db1aba
9996575
62960a8
4db1aba
8367fb1
9996575
 
afc5aa8
4db1aba
 
 
 
 
9849dab
4db1aba
 
 
2351c87
4db1aba
0ca919a
 
71be993
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4db1aba
 
 
0ca919a
4db1aba
7e15abb
 
0ca919a
 
 
4db1aba
 
3e7c587
4db1aba
 
0ca919a
 
4db1aba
afc5aa8
4db1aba
 
afc5aa8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
---
library_name: pytorch
license: agpl-3.0
tags:
- real_time
- android
pipeline_tag: image-segmentation

---

![](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/models/yolov8_seg/web-assets/model_demo.png)

# YOLOv8-Segmentation: Optimized for Mobile Deployment
## Real-time object segmentation optimized for mobile and edge by Ultralytics


Ultralytics YOLOv8 is a machine learning model that predicts bounding boxes, segmentation masks and classes of objects in an image.

This model is an implementation of YOLOv8-Segmentation found [here](https://github.com/ultralytics/ultralytics/tree/main/ultralytics/models/yolo/segment).


 More details on model performance across various devices, can be found [here](https://aihub.qualcomm.com/models/yolov8_seg).

### Model Details

- **Model Type:** Semantic segmentation
- **Model Stats:**
  - Model checkpoint: YOLOv8N-Seg
  - Input resolution: 640x640
  - Number of parameters: 3.43M
  - Model size: 13.2 MB
  - Number of output classes: 80

| Model | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|---|---|---|---|---|---|---|---|---|
| YOLOv8-Segmentation | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | TFLITE | 8.23 ms | 4 - 26 MB | FP16 | NPU | -- |
| YOLOv8-Segmentation | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | QNN | 6.154 ms | 5 - 22 MB | FP16 | NPU | -- |
| YOLOv8-Segmentation | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | ONNX | 6.466 ms | 12 - 47 MB | FP16 | NPU | -- |
| YOLOv8-Segmentation | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | TFLITE | 5.993 ms | 3 - 53 MB | FP16 | NPU | -- |
| YOLOv8-Segmentation | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | QNN | 4.31 ms | 51 - 106 MB | FP16 | NPU | -- |
| YOLOv8-Segmentation | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | ONNX | 4.408 ms | 16 - 82 MB | FP16 | NPU | -- |
| YOLOv8-Segmentation | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | TFLITE | 4.728 ms | 4 - 47 MB | FP16 | NPU | -- |
| YOLOv8-Segmentation | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | QNN | 3.483 ms | 5 - 51 MB | FP16 | NPU | -- |
| YOLOv8-Segmentation | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | ONNX | 3.573 ms | 4 - 55 MB | FP16 | NPU | -- |
| YOLOv8-Segmentation | SA7255P ADP | SA7255P | TFLITE | 94.179 ms | 4 - 45 MB | FP16 | NPU | -- |
| YOLOv8-Segmentation | SA7255P ADP | SA7255P | QNN | 90.395 ms | 1 - 10 MB | FP16 | NPU | -- |
| YOLOv8-Segmentation | SA8255 (Proxy) | SA8255P Proxy | TFLITE | 8.121 ms | 4 - 22 MB | FP16 | NPU | -- |
| YOLOv8-Segmentation | SA8255 (Proxy) | SA8255P Proxy | QNN | 4.978 ms | 5 - 7 MB | FP16 | NPU | -- |
| YOLOv8-Segmentation | SA8295P ADP | SA8295P | TFLITE | 12.528 ms | 4 - 33 MB | FP16 | NPU | -- |
| YOLOv8-Segmentation | SA8295P ADP | SA8295P | QNN | 9.108 ms | 0 - 18 MB | FP16 | NPU | -- |
| YOLOv8-Segmentation | SA8650 (Proxy) | SA8650P Proxy | TFLITE | 8.094 ms | 4 - 24 MB | FP16 | NPU | -- |
| YOLOv8-Segmentation | SA8650 (Proxy) | SA8650P Proxy | QNN | 5.076 ms | 5 - 8 MB | FP16 | NPU | -- |
| YOLOv8-Segmentation | SA8775P ADP | SA8775P | TFLITE | 11.909 ms | 4 - 45 MB | FP16 | NPU | -- |
| YOLOv8-Segmentation | SA8775P ADP | SA8775P | QNN | 8.095 ms | 1 - 11 MB | FP16 | NPU | -- |
| YOLOv8-Segmentation | QCS8275 (Proxy) | QCS8275 Proxy | TFLITE | 94.179 ms | 4 - 45 MB | FP16 | NPU | -- |
| YOLOv8-Segmentation | QCS8275 (Proxy) | QCS8275 Proxy | QNN | 90.395 ms | 1 - 10 MB | FP16 | NPU | -- |
| YOLOv8-Segmentation | QCS8550 (Proxy) | QCS8550 Proxy | TFLITE | 8.248 ms | 5 - 26 MB | FP16 | NPU | -- |
| YOLOv8-Segmentation | QCS8550 (Proxy) | QCS8550 Proxy | QNN | 4.914 ms | 5 - 8 MB | FP16 | NPU | -- |
| YOLOv8-Segmentation | QCS9075 (Proxy) | QCS9075 Proxy | TFLITE | 11.909 ms | 4 - 45 MB | FP16 | NPU | -- |
| YOLOv8-Segmentation | QCS9075 (Proxy) | QCS9075 Proxy | QNN | 8.095 ms | 1 - 11 MB | FP16 | NPU | -- |
| YOLOv8-Segmentation | QCS8450 (Proxy) | QCS8450 Proxy | TFLITE | 11.636 ms | 4 - 44 MB | FP16 | NPU | -- |
| YOLOv8-Segmentation | QCS8450 (Proxy) | QCS8450 Proxy | QNN | 9.636 ms | 5 - 39 MB | FP16 | NPU | -- |
| YOLOv8-Segmentation | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN | 5.444 ms | 5 - 5 MB | FP16 | NPU | -- |
| YOLOv8-Segmentation | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 6.793 ms | 17 - 17 MB | FP16 | NPU | -- |




## License
* The license for the original implementation of YOLOv8-Segmentation can be found
  [here](https://github.com/ultralytics/ultralytics/blob/main/LICENSE).
* The license for the compiled assets for on-device deployment can be found [here](https://github.com/ultralytics/ultralytics/blob/main/LICENSE)



## References
* [Ultralytics YOLOv8 Docs: Instance Segmentation](https://docs.ultralytics.com/tasks/segment/)
* [Source Model Implementation](https://github.com/ultralytics/ultralytics/tree/main/ultralytics/models/yolo/segment)



## Community
* Join [our AI Hub Slack community](https://qualcomm-ai-hub.slack.com/join/shared_invite/zt-2d5zsmas3-Sj0Q9TzslueCjS31eXG2UA#/shared-invite/email) to collaborate, post questions and learn more about on-device AI.
* For questions or feedback please [reach out to us](mailto:[email protected]).

## Usage and Limitations

Model may not be used for or in connection with any of the following applications:

- Accessing essential private and public services and benefits;
- Administration of justice and democratic processes;
- Assessing or recognizing the emotional state of a person;
- Biometric and biometrics-based systems, including categorization of persons based on sensitive characteristics;
- Education and vocational training;
- Employment and workers management;
- Exploitation of the vulnerabilities of persons resulting in harmful behavior;
- General purpose social scoring;
- Law enforcement;
- Management and operation of critical infrastructure;
- Migration, asylum and border control management;
- Predictive policing;
- Real-time remote biometric identification in public spaces;
- Recommender systems of social media platforms;
- Scraping of facial images (from the internet or otherwise); and/or
- Subliminal manipulation