quancute commited on
Commit
62e2dc2
·
verified ·
1 Parent(s): c53da0c

End of training

Browse files
Files changed (1) hide show
  1. README.md +105 -0
README.md ADDED
@@ -0,0 +1,105 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ base_model: Fsoft-AIC/videberta-base
4
+ tags:
5
+ - generated_from_trainer
6
+ metrics:
7
+ - accuracy
8
+ - f1
9
+ - precision
10
+ - recall
11
+ model-index:
12
+ - name: videberta-base-ner-ghtk-hirach_NER-first_1000_data-3090-15Nov
13
+ results: []
14
+ ---
15
+
16
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
17
+ should probably proofread and complete it, then remove this comment. -->
18
+
19
+ # videberta-base-ner-ghtk-hirach_NER-first_1000_data-3090-15Nov
20
+
21
+ This model is a fine-tuned version of [Fsoft-AIC/videberta-base](https://huggingface.co/Fsoft-AIC/videberta-base) on the None dataset.
22
+ It achieves the following results on the evaluation set:
23
+ - Loss: 0.0921
24
+ - Accuracy: 0.9816
25
+ - F1: 0.0426
26
+ - Precision: 0.25
27
+ - Recall: 0.0233
28
+
29
+ ## Model description
30
+
31
+ More information needed
32
+
33
+ ## Intended uses & limitations
34
+
35
+ More information needed
36
+
37
+ ## Training and evaluation data
38
+
39
+ More information needed
40
+
41
+ ## Training procedure
42
+
43
+ ### Training hyperparameters
44
+
45
+ The following hyperparameters were used during training:
46
+ - learning_rate: 2.5e-05
47
+ - train_batch_size: 4
48
+ - eval_batch_size: 4
49
+ - seed: 42
50
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
51
+ - lr_scheduler_type: linear
52
+ - num_epochs: 40
53
+
54
+ ### Training results
55
+
56
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
57
+ |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:---------:|:------:|
58
+ | No log | 1.0 | 250 | 0.0910 | 0.9825 | 0.0 | 0.0 | 0.0 |
59
+ | 0.1567 | 2.0 | 500 | 0.0949 | 0.9825 | 0.0 | 0.0 | 0.0 |
60
+ | 0.1567 | 3.0 | 750 | 0.0959 | 0.9825 | 0.0 | 0.0 | 0.0 |
61
+ | 0.0772 | 4.0 | 1000 | 0.0962 | 0.9825 | 0.0 | 0.0 | 0.0 |
62
+ | 0.0772 | 5.0 | 1250 | 0.0975 | 0.9825 | 0.0 | 0.0 | 0.0 |
63
+ | 0.0767 | 6.0 | 1500 | 0.0969 | 0.9825 | 0.0 | 0.0 | 0.0 |
64
+ | 0.0767 | 7.0 | 1750 | 0.0984 | 0.9825 | 0.0 | 0.0 | 0.0 |
65
+ | 0.0758 | 8.0 | 2000 | 0.0966 | 0.9825 | 0.0 | 0.0 | 0.0 |
66
+ | 0.0758 | 9.0 | 2250 | 0.0960 | 0.9825 | 0.0 | 0.0 | 0.0 |
67
+ | 0.0739 | 10.0 | 2500 | 0.0955 | 0.9825 | 0.0 | 0.0 | 0.0 |
68
+ | 0.0739 | 11.0 | 2750 | 0.0958 | 0.9825 | 0.0 | 0.0 | 0.0 |
69
+ | 0.0711 | 12.0 | 3000 | 0.0940 | 0.9825 | 0.0 | 0.0 | 0.0 |
70
+ | 0.0711 | 13.0 | 3250 | 0.0942 | 0.9820 | 0.0 | 0.0 | 0.0 |
71
+ | 0.0672 | 14.0 | 3500 | 0.0958 | 0.9825 | 0.0 | 0.0 | 0.0 |
72
+ | 0.0672 | 15.0 | 3750 | 0.0943 | 0.9825 | 0.0851 | 0.5 | 0.0465 |
73
+ | 0.0639 | 16.0 | 4000 | 0.0926 | 0.9829 | 0.0455 | 1.0 | 0.0233 |
74
+ | 0.0639 | 17.0 | 4250 | 0.0964 | 0.9820 | 0.0435 | 0.3333 | 0.0233 |
75
+ | 0.0611 | 18.0 | 4500 | 0.0970 | 0.9820 | 0.0435 | 0.3333 | 0.0233 |
76
+ | 0.0611 | 19.0 | 4750 | 0.0969 | 0.9825 | 0.0444 | 0.5 | 0.0233 |
77
+ | 0.058 | 20.0 | 5000 | 0.0952 | 0.9820 | 0.0435 | 0.3333 | 0.0233 |
78
+ | 0.058 | 21.0 | 5250 | 0.0950 | 0.9820 | 0.0435 | 0.3333 | 0.0233 |
79
+ | 0.0547 | 22.0 | 5500 | 0.0954 | 0.9816 | 0.0426 | 0.25 | 0.0233 |
80
+ | 0.0547 | 23.0 | 5750 | 0.0963 | 0.9816 | 0.0426 | 0.25 | 0.0233 |
81
+ | 0.0525 | 24.0 | 6000 | 0.0946 | 0.9820 | 0.0435 | 0.3333 | 0.0233 |
82
+ | 0.0525 | 25.0 | 6250 | 0.0942 | 0.9820 | 0.0435 | 0.3333 | 0.0233 |
83
+ | 0.0502 | 26.0 | 6500 | 0.0909 | 0.9825 | 0.0444 | 0.5 | 0.0233 |
84
+ | 0.0502 | 27.0 | 6750 | 0.0958 | 0.9816 | 0.0426 | 0.25 | 0.0233 |
85
+ | 0.048 | 28.0 | 7000 | 0.0934 | 0.9808 | 0.0408 | 0.1667 | 0.0233 |
86
+ | 0.048 | 29.0 | 7250 | 0.0946 | 0.9804 | 0.04 | 0.1429 | 0.0233 |
87
+ | 0.0458 | 30.0 | 7500 | 0.0938 | 0.9808 | 0.0408 | 0.1667 | 0.0233 |
88
+ | 0.0458 | 31.0 | 7750 | 0.0913 | 0.9829 | 0.0870 | 0.6667 | 0.0465 |
89
+ | 0.044 | 32.0 | 8000 | 0.0913 | 0.9816 | 0.0426 | 0.25 | 0.0233 |
90
+ | 0.044 | 33.0 | 8250 | 0.0915 | 0.9808 | 0.0408 | 0.1667 | 0.0233 |
91
+ | 0.0427 | 34.0 | 8500 | 0.0924 | 0.9808 | 0.0408 | 0.1667 | 0.0233 |
92
+ | 0.0427 | 35.0 | 8750 | 0.0912 | 0.9812 | 0.0417 | 0.2 | 0.0233 |
93
+ | 0.041 | 36.0 | 9000 | 0.0922 | 0.9808 | 0.0408 | 0.1667 | 0.0233 |
94
+ | 0.041 | 37.0 | 9250 | 0.0933 | 0.9812 | 0.0417 | 0.2 | 0.0233 |
95
+ | 0.0404 | 38.0 | 9500 | 0.0929 | 0.9812 | 0.0417 | 0.2 | 0.0233 |
96
+ | 0.0404 | 39.0 | 9750 | 0.0922 | 0.9816 | 0.0426 | 0.25 | 0.0233 |
97
+ | 0.0401 | 40.0 | 10000 | 0.0921 | 0.9816 | 0.0426 | 0.25 | 0.0233 |
98
+
99
+
100
+ ### Framework versions
101
+
102
+ - Transformers 4.44.2
103
+ - Pytorch 2.4.1+cu121
104
+ - Datasets 3.1.0
105
+ - Tokenizers 0.19.1