--- library_name: transformers base_model: Fsoft-AIC/videberta-base tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: videberta-base-ner-ghtk-hirach_NER-first_1000_data-3090-15Nov results: [] --- # videberta-base-ner-ghtk-hirach_NER-first_1000_data-3090-15Nov This model is a fine-tuned version of [Fsoft-AIC/videberta-base](https://huggingface.co/Fsoft-AIC/videberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0921 - Accuracy: 0.9816 - F1: 0.0426 - Precision: 0.25 - Recall: 0.0233 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2.5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 40 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:---------:|:------:| | No log | 1.0 | 250 | 0.0910 | 0.9825 | 0.0 | 0.0 | 0.0 | | 0.1567 | 2.0 | 500 | 0.0949 | 0.9825 | 0.0 | 0.0 | 0.0 | | 0.1567 | 3.0 | 750 | 0.0959 | 0.9825 | 0.0 | 0.0 | 0.0 | | 0.0772 | 4.0 | 1000 | 0.0962 | 0.9825 | 0.0 | 0.0 | 0.0 | | 0.0772 | 5.0 | 1250 | 0.0975 | 0.9825 | 0.0 | 0.0 | 0.0 | | 0.0767 | 6.0 | 1500 | 0.0969 | 0.9825 | 0.0 | 0.0 | 0.0 | | 0.0767 | 7.0 | 1750 | 0.0984 | 0.9825 | 0.0 | 0.0 | 0.0 | | 0.0758 | 8.0 | 2000 | 0.0966 | 0.9825 | 0.0 | 0.0 | 0.0 | | 0.0758 | 9.0 | 2250 | 0.0960 | 0.9825 | 0.0 | 0.0 | 0.0 | | 0.0739 | 10.0 | 2500 | 0.0955 | 0.9825 | 0.0 | 0.0 | 0.0 | | 0.0739 | 11.0 | 2750 | 0.0958 | 0.9825 | 0.0 | 0.0 | 0.0 | | 0.0711 | 12.0 | 3000 | 0.0940 | 0.9825 | 0.0 | 0.0 | 0.0 | | 0.0711 | 13.0 | 3250 | 0.0942 | 0.9820 | 0.0 | 0.0 | 0.0 | | 0.0672 | 14.0 | 3500 | 0.0958 | 0.9825 | 0.0 | 0.0 | 0.0 | | 0.0672 | 15.0 | 3750 | 0.0943 | 0.9825 | 0.0851 | 0.5 | 0.0465 | | 0.0639 | 16.0 | 4000 | 0.0926 | 0.9829 | 0.0455 | 1.0 | 0.0233 | | 0.0639 | 17.0 | 4250 | 0.0964 | 0.9820 | 0.0435 | 0.3333 | 0.0233 | | 0.0611 | 18.0 | 4500 | 0.0970 | 0.9820 | 0.0435 | 0.3333 | 0.0233 | | 0.0611 | 19.0 | 4750 | 0.0969 | 0.9825 | 0.0444 | 0.5 | 0.0233 | | 0.058 | 20.0 | 5000 | 0.0952 | 0.9820 | 0.0435 | 0.3333 | 0.0233 | | 0.058 | 21.0 | 5250 | 0.0950 | 0.9820 | 0.0435 | 0.3333 | 0.0233 | | 0.0547 | 22.0 | 5500 | 0.0954 | 0.9816 | 0.0426 | 0.25 | 0.0233 | | 0.0547 | 23.0 | 5750 | 0.0963 | 0.9816 | 0.0426 | 0.25 | 0.0233 | | 0.0525 | 24.0 | 6000 | 0.0946 | 0.9820 | 0.0435 | 0.3333 | 0.0233 | | 0.0525 | 25.0 | 6250 | 0.0942 | 0.9820 | 0.0435 | 0.3333 | 0.0233 | | 0.0502 | 26.0 | 6500 | 0.0909 | 0.9825 | 0.0444 | 0.5 | 0.0233 | | 0.0502 | 27.0 | 6750 | 0.0958 | 0.9816 | 0.0426 | 0.25 | 0.0233 | | 0.048 | 28.0 | 7000 | 0.0934 | 0.9808 | 0.0408 | 0.1667 | 0.0233 | | 0.048 | 29.0 | 7250 | 0.0946 | 0.9804 | 0.04 | 0.1429 | 0.0233 | | 0.0458 | 30.0 | 7500 | 0.0938 | 0.9808 | 0.0408 | 0.1667 | 0.0233 | | 0.0458 | 31.0 | 7750 | 0.0913 | 0.9829 | 0.0870 | 0.6667 | 0.0465 | | 0.044 | 32.0 | 8000 | 0.0913 | 0.9816 | 0.0426 | 0.25 | 0.0233 | | 0.044 | 33.0 | 8250 | 0.0915 | 0.9808 | 0.0408 | 0.1667 | 0.0233 | | 0.0427 | 34.0 | 8500 | 0.0924 | 0.9808 | 0.0408 | 0.1667 | 0.0233 | | 0.0427 | 35.0 | 8750 | 0.0912 | 0.9812 | 0.0417 | 0.2 | 0.0233 | | 0.041 | 36.0 | 9000 | 0.0922 | 0.9808 | 0.0408 | 0.1667 | 0.0233 | | 0.041 | 37.0 | 9250 | 0.0933 | 0.9812 | 0.0417 | 0.2 | 0.0233 | | 0.0404 | 38.0 | 9500 | 0.0929 | 0.9812 | 0.0417 | 0.2 | 0.0233 | | 0.0404 | 39.0 | 9750 | 0.0922 | 0.9816 | 0.0426 | 0.25 | 0.0233 | | 0.0401 | 40.0 | 10000 | 0.0921 | 0.9816 | 0.0426 | 0.25 | 0.0233 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.1+cu121 - Datasets 3.1.0 - Tokenizers 0.19.1