diff --git "a/README.md" "b/README.md" new file mode 100644--- /dev/null +++ "b/README.md" @@ -0,0 +1,745 @@ +--- +base_model: sentence-transformers/paraphrase-MiniLM-L3-v2 +library_name: setfit +metrics: +- accuracy +pipeline_tag: text-classification +tags: +- setfit +- sentence-transformers +- text-classification +- generated_from_setfit_trainer +widget: +- text: 'Category: Milk, Buttermilk, Kefir, Goat''s milk, Non-dairy milk, Soy milk, + Almond milk, Rice milk, Coconut milk, Yogurt, Chipotle dip, Dill dip, Onion dip, + Ranch dip, Spinach dip, Tzatziki dip, Vegetable dip, Yogurt parfait, Frozen yogurt, + Frozen yogurt sandwich' +- text: 'company.sector: Software, Finance, Communications, pharmaceuticals, technology, + Fashion, real estate, software, banking and insurance, groceries, construction/real + estate/banking, Oil refining, Oil refining, retail, retail, casinos, food + packaging, cars, cosmetics, None' +- text: 'variety: Western, Eastern' +- text: 'Data.Lycopene: 0, 1, 300, 7271, 6399, 4601, 4123, 1523, 1422, 1351, 11, 816, + 819, 812, 1001, 769, 1365, 97, 21, 34' +- text: 'Date.Month: 8, 3, 4, 5, 6, 7, 9, 10, 11, 12, 1, 2' +inference: true +model-index: +- name: SetFit with sentence-transformers/paraphrase-MiniLM-L3-v2 + results: + - task: + type: text-classification + name: Text Classification + dataset: + name: Unknown + type: unknown + split: test + metrics: + - type: accuracy + value: 0.7629716981132075 + name: Accuracy +--- + +# SetFit with sentence-transformers/paraphrase-MiniLM-L3-v2 + +This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/paraphrase-MiniLM-L3-v2](https://huggingface.co/sentence-transformers/paraphrase-MiniLM-L3-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. + +The model has been trained using an efficient few-shot learning technique that involves: + +1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. +2. Training a classification head with features from the fine-tuned Sentence Transformer. + +## Model Details + +### Model Description +- **Model Type:** SetFit +- **Sentence Transformer body:** [sentence-transformers/paraphrase-MiniLM-L3-v2](https://huggingface.co/sentence-transformers/paraphrase-MiniLM-L3-v2) +- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance +- **Maximum Sequence Length:** 128 tokens +- **Number of Classes:** 53 classes + + + + +### Model Sources + +- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) +- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) +- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) + +### Model Labels +| Label | Examples | +|:------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| +| Integer | | +| Country Name | | +| License Plate | | +| Date | | +| Latitude | | +| Month Number | | +| Floating Point Number | | +| Time | | +| Place | | +| Full Name | | +| U.S. State Abbreviation | | +| Price | | +| U.S. State | | +| Gender | | +| Longitude | | +| URL | | +| Day of Week | | +| Slug | | +| Timestamp | | +| Coordinate | | +| Likert scale | | +| Categorical | | +| Secondary Address | | +| Year | | +| Zip Code | | +| Region | | +| AM/PM | | +| Race/Ethnicity | | +| Street Name | | +| Day of Month | | +| Boolean | | +| Color | | +| Location | | +| Last Name | | +| Company Name | | +| Street Address | | +| Short text | | +| Occupation | | +| Very short text | | +| Numeric | | +| URI | | +| Letter grade | | +| Month Name | | +| Age | | +| Partial timestamp | | +| Abbreviation | | +| Country ISO Code | | +| City Name | | +| Continents | | +| Postal Code | | +| Marital status | | +| First Name | | +| Currency Code | | + +## Evaluation + +### Metrics +| Label | Accuracy | +|:--------|:---------| +| **all** | 0.7630 | + +## Uses + +### Direct Use for Inference + +First install the SetFit library: + +```bash +pip install setfit +``` + +Then you can load this model and run inference. + +```python +from setfit import SetFitModel + +# Download from the 🤗 Hub +model = SetFitModel.from_pretrained("quantisan/paraphrase-MiniLM-L3-v2-93dataset-v2labels") +# Run inference +preds = model("variety: Western, Eastern") +``` + + + + + + + + + +## Training Details + +### Training Set Metrics +| Training set | Min | Median | Max | +|:-------------|:----|:--------|:----| +| Word count | 2 | 22.1604 | 378 | + +| Label | Training Sample Count | +|:------------------------|:----------------------| +| Categorical | 8 | +| Numeric | 8 | +| Timestamp | 5 | +| Date | 8 | +| Integer | 8 | +| Partial timestamp | 3 | +| Short text | 8 | +| Very short text | 3 | +| AM/PM | 1 | +| Boolean | 8 | +| City Name | 4 | +| Color | 3 | +| Company Name | 1 | +| Coordinate | 1 | +| Country ISO Code | 3 | +| Country Name | 8 | +| Currency Code | 1 | +| Day of Month | 3 | +| Day of Week | 2 | +| First Name | 1 | +| Floating Point Number | 8 | +| Full Name | 8 | +| Last Name | 1 | +| Latitude | 4 | +| License Plate | 1 | +| Longitude | 4 | +| Month Name | 4 | +| Month Number | 4 | +| Occupation | 3 | +| Postal Code | 1 | +| Price | 1 | +| Secondary Address | 1 | +| Slug | 8 | +| Street Address | 1 | +| Street Name | 2 | +| Time | 1 | +| U.S. State | 8 | +| U.S. State Abbreviation | 6 | +| URI | 1 | +| URL | 8 | +| Year | 8 | +| Zip Code | 3 | +| Likert scale | 8 | +| Gender | 8 | +| Letter grade | 4 | +| Race/Ethnicity | 3 | +| Marital status | 2 | +| Continents | 1 | +| Region | 5 | +| Age | 3 | +| Place | 1 | +| Abbreviation | 1 | +| Location | 3 | + +### Training Hyperparameters +- batch_size: (8, 8) +- num_epochs: (4, 4) +- max_steps: -1 +- sampling_strategy: oversampling +- body_learning_rate: (2e-05, 1e-05) +- head_learning_rate: 0.01 +- loss: CosineSimilarityLoss +- distance_metric: cosine_distance +- margin: 0.25 +- end_to_end: False +- use_amp: False +- warmup_proportion: 0.1 +- l2_weight: 0.01 +- seed: 42 +- eval_max_steps: -1 +- load_best_model_at_end: True + +### Training Results +| Epoch | Step | Training Loss | Validation Loss | +|:------:|:-----:|:-------------:|:---------------:| +| 0.0002 | 1 | 0.1497 | - | +| 0.0092 | 50 | 0.1834 | - | +| 0.0183 | 100 | 0.1917 | - | +| 0.0275 | 150 | 0.1712 | - | +| 0.0366 | 200 | 0.1505 | - | +| 0.0458 | 250 | 0.146 | - | +| 0.0549 | 300 | 0.1465 | - | +| 0.0641 | 350 | 0.1297 | - | +| 0.0732 | 400 | 0.1238 | - | +| 0.0824 | 450 | 0.111 | - | +| 0.0916 | 500 | 0.1035 | - | +| 0.1007 | 550 | 0.1008 | - | +| 0.1099 | 600 | 0.0914 | - | +| 0.1190 | 650 | 0.0869 | - | +| 0.1282 | 700 | 0.0792 | - | +| 0.1373 | 750 | 0.0712 | - | +| 0.1465 | 800 | 0.0709 | - | +| 0.1556 | 850 | 0.0808 | - | +| 0.1648 | 900 | 0.0659 | - | +| 0.1740 | 950 | 0.0611 | - | +| 0.1831 | 1000 | 0.0611 | - | +| 0.1923 | 1050 | 0.0607 | - | +| 0.2014 | 1100 | 0.0611 | - | +| 0.2106 | 1150 | 0.0507 | - | +| 0.2197 | 1200 | 0.0577 | - | +| 0.2289 | 1250 | 0.0508 | - | +| 0.2381 | 1300 | 0.0399 | - | +| 0.2472 | 1350 | 0.0442 | - | +| 0.2564 | 1400 | 0.0516 | - | +| 0.2655 | 1450 | 0.0441 | - | +| 0.2747 | 1500 | 0.0472 | - | +| 0.2838 | 1550 | 0.0284 | - | +| 0.2930 | 1600 | 0.0492 | - | +| 0.3021 | 1650 | 0.035 | - | +| 0.3113 | 1700 | 0.0338 | - | +| 0.3205 | 1750 | 0.0286 | - | +| 0.3296 | 1800 | 0.0296 | - | +| 0.3388 | 1850 | 0.0328 | - | +| 0.3479 | 1900 | 0.0277 | - | +| 0.3571 | 1950 | 0.0269 | - | +| 0.3662 | 2000 | 0.0262 | - | +| 0.3754 | 2050 | 0.0311 | - | +| 0.3845 | 2100 | 0.0277 | - | +| 0.3937 | 2150 | 0.022 | - | +| 0.4029 | 2200 | 0.0216 | - | +| 0.4120 | 2250 | 0.0213 | - | +| 0.4212 | 2300 | 0.0231 | - | +| 0.4303 | 2350 | 0.0255 | - | +| 0.4395 | 2400 | 0.02 | - | +| 0.4486 | 2450 | 0.0181 | - | +| 0.4578 | 2500 | 0.0196 | - | +| 0.4669 | 2550 | 0.0182 | - | +| 0.4761 | 2600 | 0.0199 | - | +| 0.4853 | 2650 | 0.0171 | - | +| 0.4944 | 2700 | 0.0171 | - | +| 0.5036 | 2750 | 0.0169 | - | +| 0.5127 | 2800 | 0.0161 | - | +| 0.5219 | 2850 | 0.0104 | - | +| 0.5310 | 2900 | 0.0133 | - | +| 0.5402 | 2950 | 0.0137 | - | +| 0.5493 | 3000 | 0.0241 | - | +| 0.5585 | 3050 | 0.0156 | - | +| 0.5677 | 3100 | 0.0155 | - | +| 0.5768 | 3150 | 0.0158 | - | +| 0.5860 | 3200 | 0.0165 | - | +| 0.5951 | 3250 | 0.0141 | - | +| 0.6043 | 3300 | 0.0129 | - | +| 0.6134 | 3350 | 0.0129 | - | +| 0.6226 | 3400 | 0.0103 | - | +| 0.6318 | 3450 | 0.011 | - | +| 0.6409 | 3500 | 0.0117 | - | +| 0.6501 | 3550 | 0.0128 | - | +| 0.6592 | 3600 | 0.0125 | - | +| 0.6684 | 3650 | 0.0138 | - | +| 0.6775 | 3700 | 0.0101 | - | +| 0.6867 | 3750 | 0.0123 | - | +| 0.6958 | 3800 | 0.0127 | - | +| 0.7050 | 3850 | 0.0088 | - | +| 0.7142 | 3900 | 0.0097 | - | +| 0.7233 | 3950 | 0.0078 | - | +| 0.7325 | 4000 | 0.0056 | - | +| 0.7416 | 4050 | 0.0096 | - | +| 0.7508 | 4100 | 0.0114 | - | +| 0.7599 | 4150 | 0.0105 | - | +| 0.7691 | 4200 | 0.0101 | - | +| 0.7782 | 4250 | 0.0077 | - | +| 0.7874 | 4300 | 0.0104 | - | +| 0.7966 | 4350 | 0.007 | - | +| 0.8057 | 4400 | 0.0112 | - | +| 0.8149 | 4450 | 0.008 | - | +| 0.8240 | 4500 | 0.0063 | - | +| 0.8332 | 4550 | 0.0153 | - | +| 0.8423 | 4600 | 0.0081 | - | +| 0.8515 | 4650 | 0.007 | - | +| 0.8606 | 4700 | 0.0052 | - | +| 0.8698 | 4750 | 0.0054 | - | +| 0.8790 | 4800 | 0.0063 | - | +| 0.8881 | 4850 | 0.0131 | - | +| 0.8973 | 4900 | 0.0086 | - | +| 0.9064 | 4950 | 0.0086 | - | +| 0.9156 | 5000 | 0.008 | - | +| 0.9247 | 5050 | 0.0097 | - | +| 0.9339 | 5100 | 0.0081 | - | +| 0.9431 | 5150 | 0.0052 | - | +| 0.9522 | 5200 | 0.008 | - | +| 0.9614 | 5250 | 0.0055 | - | +| 0.9705 | 5300 | 0.0048 | - | +| 0.9797 | 5350 | 0.0055 | - | +| 0.9888 | 5400 | 0.0064 | - | +| 0.9980 | 5450 | 0.0043 | - | +| 1.0 | 5461 | - | 0.0926 | +| 1.0071 | 5500 | 0.0064 | - | +| 1.0163 | 5550 | 0.0079 | - | +| 1.0255 | 5600 | 0.0037 | - | +| 1.0346 | 5650 | 0.0045 | - | +| 1.0438 | 5700 | 0.0072 | - | +| 1.0529 | 5750 | 0.0055 | - | +| 1.0621 | 5800 | 0.0046 | - | +| 1.0712 | 5850 | 0.0039 | - | +| 1.0804 | 5900 | 0.0063 | - | +| 1.0895 | 5950 | 0.0071 | - | +| 1.0987 | 6000 | 0.005 | - | +| 1.1079 | 6050 | 0.0066 | - | +| 1.1170 | 6100 | 0.0041 | - | +| 1.1262 | 6150 | 0.0056 | - | +| 1.1353 | 6200 | 0.0063 | - | +| 1.1445 | 6250 | 0.0057 | - | +| 1.1536 | 6300 | 0.004 | - | +| 1.1628 | 6350 | 0.0058 | - | +| 1.1719 | 6400 | 0.0067 | - | +| 1.1811 | 6450 | 0.0058 | - | +| 1.1903 | 6500 | 0.0081 | - | +| 1.1994 | 6550 | 0.0062 | - | +| 1.2086 | 6600 | 0.0062 | - | +| 1.2177 | 6650 | 0.0034 | - | +| 1.2269 | 6700 | 0.0031 | - | +| 1.2360 | 6750 | 0.0048 | - | +| 1.2452 | 6800 | 0.006 | - | +| 1.2543 | 6850 | 0.0054 | - | +| 1.2635 | 6900 | 0.007 | - | +| 1.2727 | 6950 | 0.0064 | - | +| 1.2818 | 7000 | 0.0055 | - | +| 1.2910 | 7050 | 0.0049 | - | +| 1.3001 | 7100 | 0.0063 | - | +| 1.3093 | 7150 | 0.0044 | - | +| 1.3184 | 7200 | 0.0063 | - | +| 1.3276 | 7250 | 0.003 | - | +| 1.3368 | 7300 | 0.0049 | - | +| 1.3459 | 7350 | 0.0047 | - | +| 1.3551 | 7400 | 0.0043 | - | +| 1.3642 | 7450 | 0.0023 | - | +| 1.3734 | 7500 | 0.0025 | - | +| 1.3825 | 7550 | 0.0047 | - | +| 1.3917 | 7600 | 0.0027 | - | +| 1.4008 | 7650 | 0.0036 | - | +| 1.4100 | 7700 | 0.0026 | - | +| 1.4192 | 7750 | 0.0019 | - | +| 1.4283 | 7800 | 0.0048 | - | +| 1.4375 | 7850 | 0.0047 | - | +| 1.4466 | 7900 | 0.0041 | - | +| 1.4558 | 7950 | 0.0073 | - | +| 1.4649 | 8000 | 0.0023 | - | +| 1.4741 | 8050 | 0.0054 | - | +| 1.4832 | 8100 | 0.0042 | - | +| 1.4924 | 8150 | 0.0078 | - | +| 1.5016 | 8200 | 0.0063 | - | +| 1.5107 | 8250 | 0.0033 | - | +| 1.5199 | 8300 | 0.0055 | - | +| 1.5290 | 8350 | 0.0043 | - | +| 1.5382 | 8400 | 0.0027 | - | +| 1.5473 | 8450 | 0.0021 | - | +| 1.5565 | 8500 | 0.0022 | - | +| 1.5656 | 8550 | 0.0063 | - | +| 1.5748 | 8600 | 0.0049 | - | +| 1.5840 | 8650 | 0.0049 | - | +| 1.5931 | 8700 | 0.0057 | - | +| 1.6023 | 8750 | 0.0035 | - | +| 1.6114 | 8800 | 0.0022 | - | +| 1.6206 | 8850 | 0.0029 | - | +| 1.6297 | 8900 | 0.0062 | - | +| 1.6389 | 8950 | 0.0022 | - | +| 1.6480 | 9000 | 0.0047 | - | +| 1.6572 | 9050 | 0.0024 | - | +| 1.6664 | 9100 | 0.0053 | - | +| 1.6755 | 9150 | 0.0021 | - | +| 1.6847 | 9200 | 0.0029 | - | +| 1.6938 | 9250 | 0.0031 | - | +| 1.7030 | 9300 | 0.0024 | - | +| 1.7121 | 9350 | 0.0034 | - | +| 1.7213 | 9400 | 0.0021 | - | +| 1.7305 | 9450 | 0.0025 | - | +| 1.7396 | 9500 | 0.0023 | - | +| 1.7488 | 9550 | 0.0029 | - | +| 1.7579 | 9600 | 0.0025 | - | +| 1.7671 | 9650 | 0.0021 | - | +| 1.7762 | 9700 | 0.0019 | - | +| 1.7854 | 9750 | 0.0034 | - | +| 1.7945 | 9800 | 0.0016 | - | +| 1.8037 | 9850 | 0.0019 | - | +| 1.8129 | 9900 | 0.0024 | - | +| 1.8220 | 9950 | 0.002 | - | +| 1.8312 | 10000 | 0.0021 | - | +| 1.8403 | 10050 | 0.0061 | - | +| 1.8495 | 10100 | 0.0019 | - | +| 1.8586 | 10150 | 0.0014 | - | +| 1.8678 | 10200 | 0.0021 | - | +| 1.8769 | 10250 | 0.0031 | - | +| 1.8861 | 10300 | 0.002 | - | +| 1.8953 | 10350 | 0.0014 | - | +| 1.9044 | 10400 | 0.0015 | - | +| 1.9136 | 10450 | 0.0014 | - | +| 1.9227 | 10500 | 0.0018 | - | +| 1.9319 | 10550 | 0.0014 | - | +| 1.9410 | 10600 | 0.0015 | - | +| 1.9502 | 10650 | 0.0014 | - | +| 1.9593 | 10700 | 0.0013 | - | +| 1.9685 | 10750 | 0.0032 | - | +| 1.9777 | 10800 | 0.0017 | - | +| 1.9868 | 10850 | 0.0015 | - | +| 1.9960 | 10900 | 0.0012 | - | +| 2.0 | 10922 | - | 0.1071 | +| 2.0051 | 10950 | 0.0013 | - | +| 2.0143 | 11000 | 0.0013 | - | +| 2.0234 | 11050 | 0.0015 | - | +| 2.0326 | 11100 | 0.0013 | - | +| 2.0418 | 11150 | 0.0013 | - | +| 2.0509 | 11200 | 0.0011 | - | +| 2.0601 | 11250 | 0.0013 | - | +| 2.0692 | 11300 | 0.0013 | - | +| 2.0784 | 11350 | 0.0034 | - | +| 2.0875 | 11400 | 0.0012 | - | +| 2.0967 | 11450 | 0.0012 | - | +| 2.1058 | 11500 | 0.0025 | - | +| 2.1150 | 11550 | 0.0026 | - | +| 2.1242 | 11600 | 0.0031 | - | +| 2.1333 | 11650 | 0.0012 | - | +| 2.1425 | 11700 | 0.0011 | - | +| 2.1516 | 11750 | 0.0013 | - | +| 2.1608 | 11800 | 0.0012 | - | +| 2.1699 | 11850 | 0.0013 | - | +| 2.1791 | 11900 | 0.0011 | - | +| 2.1882 | 11950 | 0.0011 | - | +| 2.1974 | 12000 | 0.0012 | - | +| 2.2066 | 12050 | 0.0014 | - | +| 2.2157 | 12100 | 0.003 | - | +| 2.2249 | 12150 | 0.001 | - | +| 2.2340 | 12200 | 0.0011 | - | +| 2.2432 | 12250 | 0.0028 | - | +| 2.2523 | 12300 | 0.0027 | - | +| 2.2615 | 12350 | 0.0013 | - | +| 2.2706 | 12400 | 0.0024 | - | +| 2.2798 | 12450 | 0.0011 | - | +| 2.2890 | 12500 | 0.001 | - | +| 2.2981 | 12550 | 0.0011 | - | +| 2.3073 | 12600 | 0.0011 | - | +| 2.3164 | 12650 | 0.0029 | - | +| 2.3256 | 12700 | 0.0029 | - | +| 2.3347 | 12750 | 0.0009 | - | +| 2.3439 | 12800 | 0.0013 | - | +| 2.3530 | 12850 | 0.0009 | - | +| 2.3622 | 12900 | 0.001 | - | +| 2.3714 | 12950 | 0.0011 | - | +| 2.3805 | 13000 | 0.0027 | - | +| 2.3897 | 13050 | 0.0009 | - | +| 2.3988 | 13100 | 0.0011 | - | +| 2.4080 | 13150 | 0.0012 | - | +| 2.4171 | 13200 | 0.0024 | - | +| 2.4263 | 13250 | 0.0039 | - | +| 2.4355 | 13300 | 0.001 | - | +| 2.4446 | 13350 | 0.0017 | - | +| 2.4538 | 13400 | 0.0012 | - | +| 2.4629 | 13450 | 0.0021 | - | +| 2.4721 | 13500 | 0.0021 | - | +| 2.4812 | 13550 | 0.0032 | - | +| 2.4904 | 13600 | 0.0012 | - | +| 2.4995 | 13650 | 0.0012 | - | +| 2.5087 | 13700 | 0.0014 | - | +| 2.5179 | 13750 | 0.001 | - | +| 2.5270 | 13800 | 0.0011 | - | +| 2.5362 | 13850 | 0.0009 | - | +| 2.5453 | 13900 | 0.0034 | - | +| 2.5545 | 13950 | 0.0015 | - | +| 2.5636 | 14000 | 0.0013 | - | +| 2.5728 | 14050 | 0.0069 | - | +| 2.5819 | 14100 | 0.001 | - | +| 2.5911 | 14150 | 0.0034 | - | +| 2.6003 | 14200 | 0.0028 | - | +| 2.6094 | 14250 | 0.001 | - | +| 2.6186 | 14300 | 0.0012 | - | +| 2.6277 | 14350 | 0.0013 | - | +| 2.6369 | 14400 | 0.0011 | - | +| 2.6460 | 14450 | 0.0009 | - | +| 2.6552 | 14500 | 0.001 | - | +| 2.6643 | 14550 | 0.0009 | - | +| 2.6735 | 14600 | 0.0012 | - | +| 2.6827 | 14650 | 0.0041 | - | +| 2.6918 | 14700 | 0.0008 | - | +| 2.7010 | 14750 | 0.0019 | - | +| 2.7101 | 14800 | 0.001 | - | +| 2.7193 | 14850 | 0.0012 | - | +| 2.7284 | 14900 | 0.0013 | - | +| 2.7376 | 14950 | 0.0012 | - | +| 2.7467 | 15000 | 0.0019 | - | +| 2.7559 | 15050 | 0.0009 | - | +| 2.7651 | 15100 | 0.0009 | - | +| 2.7742 | 15150 | 0.0008 | - | +| 2.7834 | 15200 | 0.0028 | - | +| 2.7925 | 15250 | 0.0009 | - | +| 2.8017 | 15300 | 0.0011 | - | +| 2.8108 | 15350 | 0.0029 | - | +| 2.8200 | 15400 | 0.0008 | - | +| 2.8292 | 15450 | 0.001 | - | +| 2.8383 | 15500 | 0.0019 | - | +| 2.8475 | 15550 | 0.0011 | - | +| 2.8566 | 15600 | 0.0022 | - | +| 2.8658 | 15650 | 0.0011 | - | +| 2.8749 | 15700 | 0.0009 | - | +| 2.8841 | 15750 | 0.0008 | - | +| 2.8932 | 15800 | 0.0009 | - | +| 2.9024 | 15850 | 0.0009 | - | +| 2.9116 | 15900 | 0.0011 | - | +| 2.9207 | 15950 | 0.0011 | - | +| 2.9299 | 16000 | 0.0017 | - | +| 2.9390 | 16050 | 0.001 | - | +| 2.9482 | 16100 | 0.0008 | - | +| 2.9573 | 16150 | 0.0009 | - | +| 2.9665 | 16200 | 0.0008 | - | +| 2.9756 | 16250 | 0.0009 | - | +| 2.9848 | 16300 | 0.0007 | - | +| 2.9940 | 16350 | 0.0011 | - | +| 3.0 | 16383 | - | 0.0990 | +| 3.0031 | 16400 | 0.0008 | - | +| 3.0123 | 16450 | 0.0008 | - | +| 3.0214 | 16500 | 0.0008 | - | +| 3.0306 | 16550 | 0.0008 | - | +| 3.0397 | 16600 | 0.0015 | - | +| 3.0489 | 16650 | 0.0007 | - | +| 3.0580 | 16700 | 0.0008 | - | +| 3.0672 | 16750 | 0.0009 | - | +| 3.0764 | 16800 | 0.0008 | - | +| 3.0855 | 16850 | 0.0008 | - | +| 3.0947 | 16900 | 0.0023 | - | +| 3.1038 | 16950 | 0.0007 | - | +| 3.1130 | 17000 | 0.0006 | - | +| 3.1221 | 17050 | 0.0024 | - | +| 3.1313 | 17100 | 0.0008 | - | +| 3.1405 | 17150 | 0.0017 | - | +| 3.1496 | 17200 | 0.0011 | - | +| 3.1588 | 17250 | 0.0008 | - | +| 3.1679 | 17300 | 0.0008 | - | +| 3.1771 | 17350 | 0.0007 | - | +| 3.1862 | 17400 | 0.0014 | - | +| 3.1954 | 17450 | 0.0008 | - | +| 3.2045 | 17500 | 0.0007 | - | +| 3.2137 | 17550 | 0.0007 | - | +| 3.2229 | 17600 | 0.0006 | - | +| 3.2320 | 17650 | 0.0007 | - | +| 3.2412 | 17700 | 0.0021 | - | +| 3.2503 | 17750 | 0.0006 | - | +| 3.2595 | 17800 | 0.0006 | - | +| 3.2686 | 17850 | 0.0007 | - | +| 3.2778 | 17900 | 0.0006 | - | +| 3.2869 | 17950 | 0.0008 | - | +| 3.2961 | 18000 | 0.0008 | - | +| 3.3053 | 18050 | 0.0008 | - | +| 3.3144 | 18100 | 0.0027 | - | +| 3.3236 | 18150 | 0.0008 | - | +| 3.3327 | 18200 | 0.0007 | - | +| 3.3419 | 18250 | 0.0007 | - | +| 3.3510 | 18300 | 0.0008 | - | +| 3.3602 | 18350 | 0.0007 | - | +| 3.3693 | 18400 | 0.0022 | - | +| 3.3785 | 18450 | 0.0007 | - | +| 3.3877 | 18500 | 0.0014 | - | +| 3.3968 | 18550 | 0.0006 | - | +| 3.4060 | 18600 | 0.0016 | - | +| 3.4151 | 18650 | 0.0007 | - | +| 3.4243 | 18700 | 0.0015 | - | +| 3.4334 | 18750 | 0.0006 | - | +| 3.4426 | 18800 | 0.001 | - | +| 3.4517 | 18850 | 0.0008 | - | +| 3.4609 | 18900 | 0.0008 | - | +| 3.4701 | 18950 | 0.0007 | - | +| 3.4792 | 19000 | 0.0015 | - | +| 3.4884 | 19050 | 0.0007 | - | +| 3.4975 | 19100 | 0.0006 | - | +| 3.5067 | 19150 | 0.0007 | - | +| 3.5158 | 19200 | 0.0014 | - | +| 3.5250 | 19250 | 0.0006 | - | +| 3.5342 | 19300 | 0.0011 | - | +| 3.5433 | 19350 | 0.0008 | - | +| 3.5525 | 19400 | 0.0007 | - | +| 3.5616 | 19450 | 0.0008 | - | +| 3.5708 | 19500 | 0.0021 | - | +| 3.5799 | 19550 | 0.0007 | - | +| 3.5891 | 19600 | 0.0007 | - | +| 3.5982 | 19650 | 0.0006 | - | +| 3.6074 | 19700 | 0.0007 | - | +| 3.6166 | 19750 | 0.0007 | - | +| 3.6257 | 19800 | 0.0007 | - | +| 3.6349 | 19850 | 0.001 | - | +| 3.6440 | 19900 | 0.0011 | - | +| 3.6532 | 19950 | 0.0007 | - | +| 3.6623 | 20000 | 0.0006 | - | +| 3.6715 | 20050 | 0.0022 | - | +| 3.6806 | 20100 | 0.0011 | - | +| 3.6898 | 20150 | 0.0007 | - | +| 3.6990 | 20200 | 0.0006 | - | +| 3.7081 | 20250 | 0.0007 | - | +| 3.7173 | 20300 | 0.0006 | - | +| 3.7264 | 20350 | 0.0006 | - | +| 3.7356 | 20400 | 0.0013 | - | +| 3.7447 | 20450 | 0.0009 | - | +| 3.7539 | 20500 | 0.0006 | - | +| 3.7630 | 20550 | 0.001 | - | +| 3.7722 | 20600 | 0.0007 | - | +| 3.7814 | 20650 | 0.0007 | - | +| 3.7905 | 20700 | 0.0006 | - | +| 3.7997 | 20750 | 0.0006 | - | +| 3.8088 | 20800 | 0.0015 | - | +| 3.8180 | 20850 | 0.0009 | - | +| 3.8271 | 20900 | 0.0009 | - | +| 3.8363 | 20950 | 0.0005 | - | +| 3.8454 | 21000 | 0.0008 | - | +| 3.8546 | 21050 | 0.0006 | - | +| 3.8638 | 21100 | 0.0008 | - | +| 3.8729 | 21150 | 0.0006 | - | +| 3.8821 | 21200 | 0.0006 | - | +| 3.8912 | 21250 | 0.0005 | - | +| 3.9004 | 21300 | 0.0006 | - | +| 3.9095 | 21350 | 0.0015 | - | +| 3.9187 | 21400 | 0.0017 | - | +| 3.9279 | 21450 | 0.0006 | - | +| 3.9370 | 21500 | 0.0007 | - | +| 3.9462 | 21550 | 0.0014 | - | +| 3.9553 | 21600 | 0.0012 | - | +| 3.9645 | 21650 | 0.0017 | - | +| 3.9736 | 21700 | 0.0008 | - | +| 3.9828 | 21750 | 0.0006 | - | +| 3.9919 | 21800 | 0.0006 | - | +| 4.0 | 21844 | - | 0.1004 | + +### Framework Versions +- Python: 3.11.10 +- SetFit: 1.1.0 +- Sentence Transformers: 3.2.0 +- Transformers: 4.45.2 +- PyTorch: 2.4.1+cu124 +- Datasets: 3.0.1 +- Tokenizers: 0.20.1 + +## Citation + +### BibTeX +```bibtex +@article{https://doi.org/10.48550/arxiv.2209.11055, + doi = {10.48550/ARXIV.2209.11055}, + url = {https://arxiv.org/abs/2209.11055}, + author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, + keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, + title = {Efficient Few-Shot Learning Without Prompts}, + publisher = {arXiv}, + year = {2022}, + copyright = {Creative Commons Attribution 4.0 International} +} +``` + + + + + + \ No newline at end of file