|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import torch |
|
from typing import Any, Callable, Dict, List, Union, Optional |
|
from diffusers.image_processor import PipelineImageInput, VaeImageProcessor |
|
from diffusers.models.autoencoders import AutoencoderKL |
|
from diffusers.models.transformers import SD3Transformer2DModel |
|
from diffusers.schedulers import FlowMatchEulerDiscreteScheduler |
|
from transformers import ( |
|
CLIPTextModelWithProjection, |
|
CLIPTokenizer, |
|
SiglipImageProcessor, |
|
SiglipVisionModel, |
|
T5EncoderModel, |
|
T5TokenizerFast, |
|
) |
|
|
|
from diffusers.utils import ( |
|
USE_PEFT_BACKEND, |
|
is_torch_xla_available, |
|
logging, |
|
replace_example_docstring, |
|
scale_lora_layers, |
|
unscale_lora_layers, |
|
) |
|
from diffusers.pipelines.stable_diffusion_3.pipeline_output import StableDiffusion3PipelineOutput |
|
from diffusers import StableDiffusion3Pipeline |
|
|
|
if is_torch_xla_available(): |
|
import torch_xla.core.xla_model as xm |
|
|
|
XLA_AVAILABLE = True |
|
else: |
|
XLA_AVAILABLE = False |
|
|
|
|
|
|
|
class SwDPipeline(StableDiffusion3Pipeline): |
|
|
|
@torch.no_grad() |
|
def __call__( |
|
self, |
|
prompt: Union[str, List[str]] = None, |
|
prompt_2: Optional[Union[str, List[str]]] = None, |
|
prompt_3: Optional[Union[str, List[str]]] = None, |
|
height: Optional[int] = None, |
|
width: Optional[int] = None, |
|
num_inference_steps: int = 28, |
|
sigmas: Optional[List[float]] = None, |
|
timesteps: Optional[List[float]] = None, |
|
scales: List[float] = None, |
|
guidance_scale: float = 7.0, |
|
negative_prompt: Optional[Union[str, List[str]]] = None, |
|
negative_prompt_2: Optional[Union[str, List[str]]] = None, |
|
negative_prompt_3: Optional[Union[str, List[str]]] = None, |
|
num_images_per_prompt: Optional[int] = 1, |
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, |
|
latents: Optional[torch.FloatTensor] = None, |
|
prompt_embeds: Optional[torch.FloatTensor] = None, |
|
negative_prompt_embeds: Optional[torch.FloatTensor] = None, |
|
pooled_prompt_embeds: Optional[torch.FloatTensor] = None, |
|
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None, |
|
ip_adapter_image: Optional[PipelineImageInput] = None, |
|
ip_adapter_image_embeds: Optional[torch.Tensor] = None, |
|
output_type: Optional[str] = "pil", |
|
return_dict: bool = True, |
|
joint_attention_kwargs: Optional[Dict[str, Any]] = None, |
|
clip_skip: Optional[int] = None, |
|
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, |
|
callback_on_step_end_tensor_inputs: List[str] = ["latents"], |
|
max_sequence_length: int = 256, |
|
skip_guidance_layers: List[int] = None, |
|
skip_layer_guidance_scale: float = 2.8, |
|
skip_layer_guidance_stop: float = 0.2, |
|
skip_layer_guidance_start: float = 0.01, |
|
mu: Optional[float] = None, |
|
): |
|
height = height or self.default_sample_size * self.vae_scale_factor |
|
width = width or self.default_sample_size * self.vae_scale_factor |
|
|
|
|
|
self.check_inputs( |
|
prompt, |
|
prompt_2, |
|
prompt_3, |
|
height, |
|
width, |
|
negative_prompt=negative_prompt, |
|
negative_prompt_2=negative_prompt_2, |
|
negative_prompt_3=negative_prompt_3, |
|
prompt_embeds=prompt_embeds, |
|
negative_prompt_embeds=negative_prompt_embeds, |
|
pooled_prompt_embeds=pooled_prompt_embeds, |
|
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, |
|
callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs, |
|
max_sequence_length=max_sequence_length, |
|
) |
|
|
|
self._guidance_scale = guidance_scale |
|
self._skip_layer_guidance_scale = skip_layer_guidance_scale |
|
self._clip_skip = clip_skip |
|
self._joint_attention_kwargs = joint_attention_kwargs |
|
self._interrupt = False |
|
|
|
|
|
if prompt is not None and isinstance(prompt, str): |
|
batch_size = 1 |
|
elif prompt is not None and isinstance(prompt, list): |
|
batch_size = len(prompt) |
|
else: |
|
batch_size = prompt_embeds.shape[0] |
|
|
|
device = self._execution_device |
|
|
|
lora_scale = ( |
|
self.joint_attention_kwargs.get("scale", None) if self.joint_attention_kwargs is not None else None |
|
) |
|
( |
|
prompt_embeds, |
|
negative_prompt_embeds, |
|
pooled_prompt_embeds, |
|
negative_pooled_prompt_embeds, |
|
) = self.encode_prompt( |
|
prompt=prompt, |
|
prompt_2=prompt_2, |
|
prompt_3=prompt_3, |
|
negative_prompt=negative_prompt, |
|
negative_prompt_2=negative_prompt_2, |
|
negative_prompt_3=negative_prompt_3, |
|
do_classifier_free_guidance=self.do_classifier_free_guidance, |
|
prompt_embeds=prompt_embeds, |
|
negative_prompt_embeds=negative_prompt_embeds, |
|
pooled_prompt_embeds=pooled_prompt_embeds, |
|
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, |
|
device=device, |
|
clip_skip=self.clip_skip, |
|
num_images_per_prompt=num_images_per_prompt, |
|
max_sequence_length=max_sequence_length, |
|
lora_scale=lora_scale, |
|
) |
|
|
|
if self.do_classifier_free_guidance: |
|
if skip_guidance_layers is not None: |
|
original_prompt_embeds = prompt_embeds |
|
original_pooled_prompt_embeds = pooled_prompt_embeds |
|
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0) |
|
pooled_prompt_embeds = torch.cat([negative_pooled_prompt_embeds, pooled_prompt_embeds], dim=0) |
|
|
|
|
|
num_channels_latents = self.transformer.config.in_channels |
|
latents = self.prepare_latents( |
|
batch_size * num_images_per_prompt, |
|
num_channels_latents, |
|
height, |
|
width, |
|
prompt_embeds.dtype, |
|
device, |
|
generator, |
|
latents, |
|
) |
|
|
|
|
|
scheduler_kwargs = {} |
|
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0) |
|
self._num_timesteps = len(timesteps) |
|
|
|
|
|
if (ip_adapter_image is not None and self.is_ip_adapter_active) or ip_adapter_image_embeds is not None: |
|
ip_adapter_image_embeds = self.prepare_ip_adapter_image_embeds( |
|
ip_adapter_image, |
|
ip_adapter_image_embeds, |
|
device, |
|
batch_size * num_images_per_prompt, |
|
self.do_classifier_free_guidance, |
|
) |
|
|
|
if self.joint_attention_kwargs is None: |
|
self._joint_attention_kwargs = {"ip_adapter_image_embeds": ip_adapter_image_embeds} |
|
else: |
|
self._joint_attention_kwargs.update(ip_adapter_image_embeds=ip_adapter_image_embeds) |
|
|
|
|
|
with self.progress_bar(total=num_inference_steps) as progress_bar: |
|
for i, t in enumerate(timesteps): |
|
if self.interrupt: |
|
continue |
|
|
|
|
|
latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents |
|
|
|
timestep = t.expand(latent_model_input.shape[0]) |
|
|
|
noise_pred = self.transformer( |
|
hidden_states=latent_model_input, |
|
timestep=timestep, |
|
encoder_hidden_states=prompt_embeds, |
|
pooled_projections=pooled_prompt_embeds, |
|
joint_attention_kwargs=self.joint_attention_kwargs, |
|
return_dict=False, |
|
)[0] |
|
|
|
|
|
if self.do_classifier_free_guidance: |
|
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) |
|
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond) |
|
should_skip_layers = ( |
|
True |
|
if i > num_inference_steps * skip_layer_guidance_start |
|
and i < num_inference_steps * skip_layer_guidance_stop |
|
else False |
|
) |
|
if skip_guidance_layers is not None and should_skip_layers: |
|
timestep = t.expand(latents.shape[0]) |
|
latent_model_input = latents |
|
noise_pred_skip_layers = self.transformer( |
|
hidden_states=latent_model_input, |
|
timestep=timestep, |
|
encoder_hidden_states=original_prompt_embeds, |
|
pooled_projections=original_pooled_prompt_embeds, |
|
joint_attention_kwargs=self.joint_attention_kwargs, |
|
return_dict=False, |
|
skip_layers=skip_guidance_layers, |
|
)[0] |
|
noise_pred = ( |
|
noise_pred + ( |
|
noise_pred_text - noise_pred_skip_layers) * self._skip_layer_guidance_scale |
|
) |
|
|
|
|
|
latents_dtype = latents.dtype |
|
sigma = sigmas[i] |
|
sigma_next = sigmas[i + 1] |
|
x0_pred = (latents - sigma * noise_pred) |
|
if scales and i + 1 < len(scales): |
|
x0_pred = torch.nn.functional.interpolate(x0_pred, size=scales[i + 1], mode='bicubic') |
|
noise = torch.randn(x0_pred.shape, generator=generator, device=device, dtype=x0_pred.dtype) |
|
latents = (1 - sigma_next) * x0_pred + sigma_next * noise |
|
|
|
if latents.dtype != latents_dtype: |
|
if torch.backends.mps.is_available(): |
|
|
|
latents = latents.to(latents_dtype) |
|
|
|
if callback_on_step_end is not None: |
|
callback_kwargs = {} |
|
for k in callback_on_step_end_tensor_inputs: |
|
callback_kwargs[k] = locals()[k] |
|
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) |
|
|
|
latents = callback_outputs.pop("latents", latents) |
|
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) |
|
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds) |
|
negative_pooled_prompt_embeds = callback_outputs.pop( |
|
"negative_pooled_prompt_embeds", negative_pooled_prompt_embeds |
|
) |
|
|
|
|
|
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): |
|
progress_bar.update() |
|
|
|
if XLA_AVAILABLE: |
|
xm.mark_step() |
|
|
|
if output_type == "latent": |
|
image = latents |
|
|
|
else: |
|
latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor |
|
|
|
image = self.vae.decode(latents, return_dict=False)[0] |
|
image = self.image_processor.postprocess(image, output_type=output_type) |
|
|
|
|
|
self.maybe_free_model_hooks() |
|
|
|
if not return_dict: |
|
return (image,) |
|
|
|
return StableDiffusion3PipelineOutput(images=image) |