Update pipeline.py
Browse files- pipeline.py +55 -0
pipeline.py
CHANGED
@@ -16,6 +16,18 @@
|
|
16 |
import torch
|
17 |
from typing import Any, Callable, Dict, List, Union, Optional
|
18 |
from diffusers.image_processor import PipelineImageInput, VaeImageProcessor
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
from diffusers.utils import (
|
20 |
USE_PEFT_BACKEND,
|
21 |
is_torch_xla_available,
|
@@ -38,6 +50,49 @@ else:
|
|
38 |
|
39 |
class SwDPipeline(DiffusionPipeline):
|
40 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
@torch.no_grad()
|
42 |
def __call__(
|
43 |
self,
|
|
|
16 |
import torch
|
17 |
from typing import Any, Callable, Dict, List, Union, Optional
|
18 |
from diffusers.image_processor import PipelineImageInput, VaeImageProcessor
|
19 |
+
from diffusers.models.autoencoders import AutoencoderKL
|
20 |
+
from diffusers.models.transformers import SD3Transformer2DModel
|
21 |
+
from diffusers.schedulers import FlowMatchEulerDiscreteScheduler
|
22 |
+
from transformers import (
|
23 |
+
CLIPTextModelWithProjection,
|
24 |
+
CLIPTokenizer,
|
25 |
+
SiglipImageProcessor,
|
26 |
+
SiglipVisionModel,
|
27 |
+
T5EncoderModel,
|
28 |
+
T5TokenizerFast,
|
29 |
+
)
|
30 |
+
|
31 |
from diffusers.utils import (
|
32 |
USE_PEFT_BACKEND,
|
33 |
is_torch_xla_available,
|
|
|
50 |
|
51 |
class SwDPipeline(DiffusionPipeline):
|
52 |
|
53 |
+
def __init__(
|
54 |
+
self,
|
55 |
+
transformer: SD3Transformer2DModel,
|
56 |
+
scheduler: FlowMatchEulerDiscreteScheduler,
|
57 |
+
vae: AutoencoderKL,
|
58 |
+
text_encoder: CLIPTextModelWithProjection,
|
59 |
+
tokenizer: CLIPTokenizer,
|
60 |
+
text_encoder_2: CLIPTextModelWithProjection,
|
61 |
+
tokenizer_2: CLIPTokenizer,
|
62 |
+
text_encoder_3: T5EncoderModel,
|
63 |
+
tokenizer_3: T5TokenizerFast,
|
64 |
+
image_encoder: SiglipVisionModel = None,
|
65 |
+
feature_extractor: SiglipImageProcessor = None,
|
66 |
+
):
|
67 |
+
super().__init__()
|
68 |
+
|
69 |
+
self.register_modules(
|
70 |
+
vae=vae,
|
71 |
+
text_encoder=text_encoder,
|
72 |
+
text_encoder_2=text_encoder_2,
|
73 |
+
text_encoder_3=text_encoder_3,
|
74 |
+
tokenizer=tokenizer,
|
75 |
+
tokenizer_2=tokenizer_2,
|
76 |
+
tokenizer_3=tokenizer_3,
|
77 |
+
transformer=transformer,
|
78 |
+
scheduler=scheduler,
|
79 |
+
image_encoder=image_encoder,
|
80 |
+
feature_extractor=feature_extractor,
|
81 |
+
)
|
82 |
+
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) if getattr(self, "vae", None) else 8
|
83 |
+
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
|
84 |
+
self.tokenizer_max_length = (
|
85 |
+
self.tokenizer.model_max_length if hasattr(self, "tokenizer") and self.tokenizer is not None else 77
|
86 |
+
)
|
87 |
+
self.default_sample_size = (
|
88 |
+
self.transformer.config.sample_size
|
89 |
+
if hasattr(self, "transformer") and self.transformer is not None
|
90 |
+
else 128
|
91 |
+
)
|
92 |
+
self.patch_size = (
|
93 |
+
self.transformer.config.patch_size if hasattr(self, "transformer") and self.transformer is not None else 2
|
94 |
+
)
|
95 |
+
|
96 |
@torch.no_grad()
|
97 |
def __call__(
|
98 |
self,
|