quickjkee commited on
Commit
8ee5c43
·
verified ·
1 Parent(s): a84cf27

Create pipeline.py

Browse files
Files changed (1) hide show
  1. pipeline.py +508 -0
pipeline.py ADDED
@@ -0,0 +1,508 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2022 The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+
14
+ # limitations under the License.
15
+
16
+
17
+ import torch
18
+ import numpy as np
19
+ import inspect
20
+ from diffusers.pipelines.flux.pipeline_output import FluxPipelineOutput
21
+ from diffusers.image_processor import PipelineImageInput
22
+ from typing import Any, Callable, Dict, List, Optional, Union
23
+
24
+
25
+ if is_torch_xla_available():
26
+ import torch_xla.core.xla_model as xm
27
+
28
+ XLA_AVAILABLE = True
29
+ else:
30
+ XLA_AVAILABLE = False
31
+
32
+
33
+ def pack_latents(latents, batch_size, num_channels_latents, height, width):
34
+ latents = latents.view(batch_size, num_channels_latents, height // 2, 2, width // 2, 2)
35
+ latents = latents.permute(0, 2, 4, 1, 3, 5)
36
+ latents = latents.reshape(batch_size, (height // 2) * (width // 2), num_channels_latents * 4)
37
+
38
+ return latents
39
+
40
+
41
+ def unpack_latents(latents, height, width):
42
+ batch_size, num_patches, channels = latents.shape
43
+
44
+ assert height % 2 == 0 and width % 2 == 0
45
+ latents = latents.view(batch_size, height // 2, width // 2, channels // 4, 2, 2)
46
+ latents = latents.permute(0, 3, 1, 4, 2, 5)
47
+
48
+ latents = latents.reshape(batch_size, channels // (2 * 2), height, width)
49
+
50
+ return latents
51
+
52
+
53
+ def calculate_shift(
54
+ image_seq_len,
55
+ base_seq_len: int = 256,
56
+ max_seq_len: int = 4096,
57
+ base_shift: float = 0.5,
58
+ max_shift: float = 1.15,
59
+ ):
60
+ m = (max_shift - base_shift) / (max_seq_len - base_seq_len)
61
+ b = base_shift - m * base_seq_len
62
+ mu = image_seq_len * m + b
63
+ return mu
64
+
65
+
66
+ def retrieve_timesteps(
67
+ scheduler,
68
+ num_inference_steps: Optional[int] = None,
69
+ device: Optional[Union[str, torch.device]] = None,
70
+ timesteps: Optional[List[int]] = None,
71
+ sigmas: Optional[List[float]] = None,
72
+ **kwargs,
73
+ ):
74
+ r"""
75
+ Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
76
+ custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
77
+
78
+ Args:
79
+ scheduler (`SchedulerMixin`):
80
+ The scheduler to get timesteps from.
81
+ num_inference_steps (`int`):
82
+ The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
83
+ must be `None`.
84
+ device (`str` or `torch.device`, *optional*):
85
+ The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
86
+ timesteps (`List[int]`, *optional*):
87
+ Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
88
+ `num_inference_steps` and `sigmas` must be `None`.
89
+ sigmas (`List[float]`, *optional*):
90
+ Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
91
+ `num_inference_steps` and `timesteps` must be `None`.
92
+
93
+ Returns:
94
+ `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
95
+ second element is the number of inference steps.
96
+ """
97
+ if timesteps is not None and sigmas is not None:
98
+ raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
99
+ if timesteps is not None:
100
+ accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
101
+ if not accepts_timesteps:
102
+ raise ValueError(
103
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
104
+ f" timestep schedules. Please check whether you are using the correct scheduler."
105
+ )
106
+ scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
107
+ timesteps = scheduler.timesteps
108
+ num_inference_steps = len(timesteps)
109
+ elif sigmas is not None:
110
+ accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
111
+ if not accept_sigmas:
112
+ raise ValueError(
113
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
114
+ f" sigmas schedules. Please check whether you are using the correct scheduler."
115
+ )
116
+ scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
117
+ timesteps = scheduler.timesteps
118
+ num_inference_steps = len(timesteps)
119
+ else:
120
+ scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
121
+ timesteps = scheduler.timesteps
122
+ return timesteps, num_inference_steps
123
+
124
+ def prepare_latent_image_ids(batch_size, height, width, device, dtype):
125
+ latent_image_ids = torch.zeros(height, width, 3)
126
+ latent_image_ids[..., 1] = latent_image_ids[..., 1] + torch.arange(height)[:, None]
127
+ latent_image_ids[..., 2] = latent_image_ids[..., 2] + torch.arange(width)[None, :]
128
+
129
+ latent_image_id_height, latent_image_id_width, latent_image_id_channels = latent_image_ids.shape
130
+
131
+ latent_image_ids = latent_image_ids.reshape(
132
+ latent_image_id_height * latent_image_id_width, latent_image_id_channels
133
+ )
134
+
135
+ return latent_image_ids.to(device=device, dtype=dtype)
136
+
137
+
138
+ @torch.no_grad()
139
+ def run(
140
+ self,
141
+ prompt: Union[str, List[str]] = None,
142
+ prompt_2: Optional[Union[str, List[str]]] = None,
143
+ negative_prompt: Union[str, List[str]] = None,
144
+ negative_prompt_2: Optional[Union[str, List[str]]] = None,
145
+ true_cfg_scale: float = 1.0,
146
+ height: Optional[int] = None,
147
+ width: Optional[int] = None,
148
+ num_inference_steps: int = 28,
149
+ sigmas: Optional[List[float]] = None,
150
+ timesteps: Optional[List[float]] = None,
151
+ scales: List[float] = None,
152
+ guidance_scale: float = 3.5,
153
+ num_images_per_prompt: Optional[int] = 1,
154
+ generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
155
+ latents: Optional[torch.FloatTensor] = None,
156
+ prompt_embeds: Optional[torch.FloatTensor] = None,
157
+ pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
158
+ ip_adapter_image: Optional[PipelineImageInput] = None,
159
+ ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None,
160
+ negative_ip_adapter_image: Optional[PipelineImageInput] = None,
161
+ negative_ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None,
162
+ negative_prompt_embeds: Optional[torch.FloatTensor] = None,
163
+ negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
164
+ output_type: Optional[str] = "pil",
165
+ return_dict: bool = True,
166
+ joint_attention_kwargs: Optional[Dict[str, Any]] = None,
167
+ callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
168
+ callback_on_step_end_tensor_inputs: List[str] = ["latents"],
169
+ max_sequence_length: int = 512,
170
+ ):
171
+ r"""
172
+ Function invoked when calling the pipeline for generation.
173
+
174
+ Args:
175
+ prompt (`str` or `List[str]`, *optional*):
176
+ The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
177
+ instead.
178
+ prompt_2 (`str` or `List[str]`, *optional*):
179
+ The prompt or prompts to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
180
+ will be used instead.
181
+ negative_prompt (`str` or `List[str]`, *optional*):
182
+ The prompt or prompts not to guide the image generation. If not defined, one has to pass
183
+ `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `true_cfg_scale` is
184
+ not greater than `1`).
185
+ negative_prompt_2 (`str` or `List[str]`, *optional*):
186
+ The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
187
+ `text_encoder_2`. If not defined, `negative_prompt` is used in all the text-encoders.
188
+ true_cfg_scale (`float`, *optional*, defaults to 1.0):
189
+ When > 1.0 and a provided `negative_prompt`, enables true classifier-free guidance.
190
+ height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
191
+ The height in pixels of the generated image. This is set to 1024 by default for the best results.
192
+ width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
193
+ The width in pixels of the generated image. This is set to 1024 by default for the best results.
194
+ num_inference_steps (`int`, *optional*, defaults to 50):
195
+ The number of denoising steps. More denoising steps usually lead to a higher quality image at the
196
+ expense of slower inference.
197
+ sigmas (`List[float]`, *optional*):
198
+ Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in
199
+ their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed
200
+ will be used.
201
+ guidance_scale (`float`, *optional*, defaults to 3.5):
202
+ Guidance scale as defined in [Classifier-Free Diffusion
203
+ Guidance](https://huggingface.co/papers/2207.12598). `guidance_scale` is defined as `w` of equation 2.
204
+ of [Imagen Paper](https://huggingface.co/papers/2205.11487). Guidance scale is enabled by setting
205
+ `guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely linked to
206
+ the text `prompt`, usually at the expense of lower image quality.
207
+ num_images_per_prompt (`int`, *optional*, defaults to 1):
208
+ The number of images to generate per prompt.
209
+ generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
210
+ One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
211
+ to make generation deterministic.
212
+ latents (`torch.FloatTensor`, *optional*):
213
+ Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
214
+ generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
215
+ tensor will ge generated by sampling using the supplied random `generator`.
216
+ prompt_embeds (`torch.FloatTensor`, *optional*):
217
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
218
+ provided, text embeddings will be generated from `prompt` input argument.
219
+ pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
220
+ Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
221
+ If not provided, pooled text embeddings will be generated from `prompt` input argument.
222
+ ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters.
223
+ ip_adapter_image_embeds (`List[torch.Tensor]`, *optional*):
224
+ Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of
225
+ IP-adapters. Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. If not
226
+ provided, embeddings are computed from the `ip_adapter_image` input argument.
227
+ negative_ip_adapter_image:
228
+ (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters.
229
+ negative_ip_adapter_image_embeds (`List[torch.Tensor]`, *optional*):
230
+ Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of
231
+ IP-adapters. Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. If not
232
+ provided, embeddings are computed from the `ip_adapter_image` input argument.
233
+ negative_prompt_embeds (`torch.FloatTensor`, *optional*):
234
+ Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
235
+ weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
236
+ argument.
237
+ negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
238
+ Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
239
+ weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
240
+ input argument.
241
+ output_type (`str`, *optional*, defaults to `"pil"`):
242
+ The output format of the generate image. Choose between
243
+ [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
244
+ return_dict (`bool`, *optional*, defaults to `True`):
245
+ Whether or not to return a [`~pipelines.flux.FluxPipelineOutput`] instead of a plain tuple.
246
+ joint_attention_kwargs (`dict`, *optional*):
247
+ A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
248
+ `self.processor` in
249
+ [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
250
+ callback_on_step_end (`Callable`, *optional*):
251
+ A function that calls at the end of each denoising steps during the inference. The function is called
252
+ with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
253
+ callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
254
+ `callback_on_step_end_tensor_inputs`.
255
+ callback_on_step_end_tensor_inputs (`List`, *optional*):
256
+ The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
257
+ will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
258
+ `._callback_tensor_inputs` attribute of your pipeline class.
259
+ max_sequence_length (`int` defaults to 512): Maximum sequence length to use with the `prompt`.
260
+
261
+ Examples:
262
+
263
+ Returns:
264
+ [`~pipelines.flux.FluxPipelineOutput`] or `tuple`: [`~pipelines.flux.FluxPipelineOutput`] if `return_dict`
265
+ is True, otherwise a `tuple`. When returning a tuple, the first element is a list with the generated
266
+ images.
267
+ """
268
+
269
+ height = height or self.default_sample_size * self.vae_scale_factor
270
+ width = width or self.default_sample_size * self.vae_scale_factor
271
+
272
+ # 1. Check inputs. Raise error if not correct
273
+ self.check_inputs(
274
+ prompt,
275
+ prompt_2,
276
+ height,
277
+ width,
278
+ negative_prompt=negative_prompt,
279
+ negative_prompt_2=negative_prompt_2,
280
+ prompt_embeds=prompt_embeds,
281
+ negative_prompt_embeds=negative_prompt_embeds,
282
+ pooled_prompt_embeds=pooled_prompt_embeds,
283
+ negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
284
+ callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
285
+ max_sequence_length=max_sequence_length,
286
+ )
287
+
288
+ self._guidance_scale = guidance_scale
289
+ self._joint_attention_kwargs = joint_attention_kwargs
290
+ self._current_timestep = None
291
+ self._interrupt = False
292
+
293
+ # 2. Define call parameters
294
+ if prompt is not None and isinstance(prompt, str):
295
+ batch_size = 1
296
+ elif prompt is not None and isinstance(prompt, list):
297
+ batch_size = len(prompt)
298
+ else:
299
+ batch_size = prompt_embeds.shape[0]
300
+
301
+ device = self._execution_device
302
+
303
+ lora_scale = (
304
+ self.joint_attention_kwargs.get("scale", None) if self.joint_attention_kwargs is not None else None
305
+ )
306
+ has_neg_prompt = negative_prompt is not None or (
307
+ negative_prompt_embeds is not None and negative_pooled_prompt_embeds is not None
308
+ )
309
+ do_true_cfg = true_cfg_scale > 1 and has_neg_prompt
310
+ (
311
+ prompt_embeds,
312
+ pooled_prompt_embeds,
313
+ text_ids,
314
+ ) = self.encode_prompt(
315
+ prompt=prompt,
316
+ prompt_2=prompt_2,
317
+ prompt_embeds=prompt_embeds,
318
+ pooled_prompt_embeds=pooled_prompt_embeds,
319
+ device=device,
320
+ num_images_per_prompt=num_images_per_prompt,
321
+ max_sequence_length=max_sequence_length,
322
+ lora_scale=lora_scale,
323
+ )
324
+ if do_true_cfg:
325
+ (
326
+ negative_prompt_embeds,
327
+ negative_pooled_prompt_embeds,
328
+ negative_text_ids,
329
+ ) = self.encode_prompt(
330
+ prompt=negative_prompt,
331
+ prompt_2=negative_prompt_2,
332
+ prompt_embeds=negative_prompt_embeds,
333
+ pooled_prompt_embeds=negative_pooled_prompt_embeds,
334
+ device=device,
335
+ num_images_per_prompt=num_images_per_prompt,
336
+ max_sequence_length=max_sequence_length,
337
+ lora_scale=lora_scale,
338
+ )
339
+
340
+ # 4. Prepare latent variables
341
+ num_channels_latents = self.transformer.config.in_channels // 4
342
+ latents, latent_image_ids = self.prepare_latents(
343
+ batch_size * num_images_per_prompt,
344
+ num_channels_latents,
345
+ height,
346
+ width,
347
+ prompt_embeds.dtype,
348
+ device,
349
+ generator,
350
+ latents,
351
+ )
352
+
353
+ # 5. Prepare timesteps
354
+ sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps) if sigmas is None else sigmas
355
+ image_seq_len = latents.shape[1]
356
+ mu = calculate_shift(
357
+ image_seq_len,
358
+ self.scheduler.config.get("base_image_seq_len", 256),
359
+ self.scheduler.config.get("max_image_seq_len", 4096),
360
+ self.scheduler.config.get("base_shift", 0.5),
361
+ self.scheduler.config.get("max_shift", 1.15),
362
+ )
363
+ timesteps, num_inference_steps = retrieve_timesteps(
364
+ self.scheduler,
365
+ num_inference_steps,
366
+ device,
367
+ sigmas=sigmas,
368
+ mu=mu,
369
+ ) if timesteps is None else (timesteps, len(timesteps))
370
+ num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
371
+ self._num_timesteps = len(timesteps)
372
+
373
+ # handle guidance
374
+ if self.transformer.config.guidance_embeds:
375
+ guidance = torch.full([1], guidance_scale, device=device, dtype=torch.float32)
376
+ guidance = guidance.expand(latents.shape[0])
377
+ else:
378
+ guidance = None
379
+
380
+ if (ip_adapter_image is not None or ip_adapter_image_embeds is not None) and (
381
+ negative_ip_adapter_image is None and negative_ip_adapter_image_embeds is None
382
+ ):
383
+ negative_ip_adapter_image = np.zeros((width, height, 3), dtype=np.uint8)
384
+ negative_ip_adapter_image = [negative_ip_adapter_image] * self.transformer.encoder_hid_proj.num_ip_adapters
385
+
386
+ elif (ip_adapter_image is None and ip_adapter_image_embeds is None) and (
387
+ negative_ip_adapter_image is not None or negative_ip_adapter_image_embeds is not None
388
+ ):
389
+ ip_adapter_image = np.zeros((width, height, 3), dtype=np.uint8)
390
+ ip_adapter_image = [ip_adapter_image] * self.transformer.encoder_hid_proj.num_ip_adapters
391
+
392
+ if self.joint_attention_kwargs is None:
393
+ self._joint_attention_kwargs = {}
394
+
395
+ image_embeds = None
396
+ negative_image_embeds = None
397
+ if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
398
+ image_embeds = self.prepare_ip_adapter_image_embeds(
399
+ ip_adapter_image,
400
+ ip_adapter_image_embeds,
401
+ device,
402
+ batch_size * num_images_per_prompt,
403
+ )
404
+ if negative_ip_adapter_image is not None or negative_ip_adapter_image_embeds is not None:
405
+ negative_image_embeds = self.prepare_ip_adapter_image_embeds(
406
+ negative_ip_adapter_image,
407
+ negative_ip_adapter_image_embeds,
408
+ device,
409
+ batch_size * num_images_per_prompt,
410
+ )
411
+
412
+ # 6. Denoising loop
413
+ with self.progress_bar(total=num_inference_steps) as progress_bar:
414
+ for i, t in enumerate(timesteps):
415
+ if self.interrupt:
416
+ continue
417
+
418
+ self._current_timestep = t
419
+ if image_embeds is not None:
420
+ self._joint_attention_kwargs["ip_adapter_image_embeds"] = image_embeds
421
+ # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
422
+ timestep = t.expand(latents.shape[0]).to(latents.dtype)
423
+
424
+ noise_pred = self.transformer(
425
+ hidden_states=latents,
426
+ timestep=timestep / 1000,
427
+ guidance=guidance,
428
+ pooled_projections=pooled_prompt_embeds,
429
+ encoder_hidden_states=prompt_embeds,
430
+ txt_ids=text_ids,
431
+ img_ids=latent_image_ids,
432
+ joint_attention_kwargs=self.joint_attention_kwargs,
433
+ return_dict=False,
434
+ )[0]
435
+
436
+ if do_true_cfg:
437
+ if negative_image_embeds is not None:
438
+ self._joint_attention_kwargs["ip_adapter_image_embeds"] = negative_image_embeds
439
+ neg_noise_pred = self.transformer(
440
+ hidden_states=latents,
441
+ timestep=timestep / 1000,
442
+ guidance=guidance,
443
+ pooled_projections=negative_pooled_prompt_embeds,
444
+ encoder_hidden_states=negative_prompt_embeds,
445
+ txt_ids=negative_text_ids,
446
+ img_ids=latent_image_ids,
447
+ joint_attention_kwargs=self.joint_attention_kwargs,
448
+ return_dict=False,
449
+ )[0]
450
+ noise_pred = neg_noise_pred + true_cfg_scale * (noise_pred - neg_noise_pred)
451
+
452
+ # compute the previous noisy sample x_t -> x_t-1
453
+ if scales is None:
454
+ latents_dtype = latents.dtype
455
+ latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
456
+ else:
457
+ latents_dtype = latents.dtype
458
+ sigma = sigmas[i]
459
+ sigma_next = sigmas[i + 1]
460
+ x0_pred = (latents - sigma * noise_pred)
461
+ x0_pred = unpack_latents(x0_pred, scales[i], scales[i])
462
+ if scales and i + 1 < len(scales):
463
+ x0_pred = torch.nn.functional.interpolate(x0_pred, size=scales[i + 1], mode='bicubic')
464
+ latent_image_ids = prepare_latent_image_ids(batch_size, scales[i + 1] // 2, scales[i + 1] // 2, device, prompt_embeds.dtype)
465
+ x0_pred = pack_latents(x0_pred, *x0_pred.shape)
466
+ noise = torch.randn(x0_pred.shape, generator=generator, dtype=x0_pred.dtype).to(x0_pred.device)
467
+ latents = (1 - sigma_next) * x0_pred + sigma_next * noise
468
+
469
+ if latents.dtype != latents_dtype:
470
+ if torch.backends.mps.is_available():
471
+ # some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
472
+ latents = latents.to(latents_dtype)
473
+
474
+ if callback_on_step_end is not None:
475
+ callback_kwargs = {}
476
+ for k in callback_on_step_end_tensor_inputs:
477
+ callback_kwargs[k] = locals()[k]
478
+ callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
479
+
480
+ latents = callback_outputs.pop("latents", latents)
481
+ prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
482
+
483
+ # call the callback, if provided
484
+ if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
485
+ progress_bar.update()
486
+
487
+ if XLA_AVAILABLE:
488
+ xm.mark_step()
489
+
490
+ self._current_timestep = None
491
+
492
+ if output_type == "latent":
493
+ image = latents
494
+ else:
495
+ if scales is not None:
496
+ height, width = int(scales[-1] * 8), int(scales[-1] * 8)
497
+ latents = self._unpack_latents(latents, height, width, self.vae_scale_factor)
498
+ latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor
499
+ image = self.vae.decode(latents, return_dict=False)[0]
500
+ image = self.image_processor.postprocess(image, output_type=output_type)
501
+
502
+ # Offload all models
503
+ self.maybe_free_model_hooks()
504
+
505
+ if not return_dict:
506
+ return (image,)
507
+
508
+ return FluxPipelineOutput(images=image)