first commit
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- CodeFormer/CodeFormer/weights/CodeFormer/your_models.txt +0 -0
- CodeFormer/CodeFormer/weights/facelib/your_models.txt +0 -0
- CodeFormer/CodeFormer/weights/realesrgan/your_models.txt +0 -0
- checkpoints/models/your_models.txt +0 -0
- post_process/checkpoints/your_models.txt +0 -0
- post_process/face_inpaint/inpaint.py +479 -0
- post_process/inswapper/CodeFormer/CodeFormer/README.md +123 -0
- post_process/inswapper/CodeFormer/CodeFormer/assets/CodeFormer_logo.png +0 -0
- post_process/inswapper/CodeFormer/CodeFormer/assets/color_enhancement_result1.png +0 -0
- post_process/inswapper/CodeFormer/CodeFormer/assets/color_enhancement_result2.png +0 -0
- post_process/inswapper/CodeFormer/CodeFormer/assets/inpainting_result1.png +0 -0
- post_process/inswapper/CodeFormer/CodeFormer/assets/inpainting_result2.png +0 -0
- post_process/inswapper/CodeFormer/CodeFormer/assets/network.jpg +0 -0
- post_process/inswapper/CodeFormer/CodeFormer/assets/restoration_result1.png +0 -0
- post_process/inswapper/CodeFormer/CodeFormer/assets/restoration_result2.png +0 -0
- post_process/inswapper/CodeFormer/CodeFormer/assets/restoration_result3.png +0 -0
- post_process/inswapper/CodeFormer/CodeFormer/assets/restoration_result4.png +0 -0
- post_process/inswapper/CodeFormer/CodeFormer/basicsr/VERSION +1 -0
- post_process/inswapper/CodeFormer/CodeFormer/basicsr/__init__.py +11 -0
- post_process/inswapper/CodeFormer/CodeFormer/basicsr/__pycache__/__init__.cpython-310.pyc +0 -0
- post_process/inswapper/CodeFormer/CodeFormer/basicsr/__pycache__/train.cpython-310.pyc +0 -0
- post_process/inswapper/CodeFormer/CodeFormer/basicsr/__pycache__/version.cpython-310.pyc +0 -0
- post_process/inswapper/CodeFormer/CodeFormer/basicsr/archs/__init__.py +25 -0
- post_process/inswapper/CodeFormer/CodeFormer/basicsr/archs/__pycache__/__init__.cpython-310.pyc +0 -0
- post_process/inswapper/CodeFormer/CodeFormer/basicsr/archs/__pycache__/arcface_arch.cpython-310.pyc +0 -0
- post_process/inswapper/CodeFormer/CodeFormer/basicsr/archs/__pycache__/arch_util.cpython-310.pyc +0 -0
- post_process/inswapper/CodeFormer/CodeFormer/basicsr/archs/__pycache__/codeformer_arch.cpython-310.pyc +0 -0
- post_process/inswapper/CodeFormer/CodeFormer/basicsr/archs/__pycache__/rrdbnet_arch.cpython-310.pyc +0 -0
- post_process/inswapper/CodeFormer/CodeFormer/basicsr/archs/__pycache__/vgg_arch.cpython-310.pyc +0 -0
- post_process/inswapper/CodeFormer/CodeFormer/basicsr/archs/__pycache__/vqgan_arch.cpython-310.pyc +0 -0
- post_process/inswapper/CodeFormer/CodeFormer/basicsr/archs/arcface_arch.py +245 -0
- post_process/inswapper/CodeFormer/CodeFormer/basicsr/archs/arch_util.py +318 -0
- post_process/inswapper/CodeFormer/CodeFormer/basicsr/archs/codeformer_arch.py +276 -0
- post_process/inswapper/CodeFormer/CodeFormer/basicsr/archs/rrdbnet_arch.py +119 -0
- post_process/inswapper/CodeFormer/CodeFormer/basicsr/archs/vgg_arch.py +161 -0
- post_process/inswapper/CodeFormer/CodeFormer/basicsr/archs/vqgan_arch.py +435 -0
- post_process/inswapper/CodeFormer/CodeFormer/basicsr/data/__init__.py +100 -0
- post_process/inswapper/CodeFormer/CodeFormer/basicsr/data/__pycache__/__init__.cpython-310.pyc +0 -0
- post_process/inswapper/CodeFormer/CodeFormer/basicsr/data/__pycache__/data_sampler.cpython-310.pyc +0 -0
- post_process/inswapper/CodeFormer/CodeFormer/basicsr/data/__pycache__/prefetch_dataloader.cpython-310.pyc +0 -0
- post_process/inswapper/CodeFormer/CodeFormer/basicsr/data/data_sampler.py +48 -0
- post_process/inswapper/CodeFormer/CodeFormer/basicsr/data/data_util.py +305 -0
- post_process/inswapper/CodeFormer/CodeFormer/basicsr/data/prefetch_dataloader.py +125 -0
- post_process/inswapper/CodeFormer/CodeFormer/basicsr/data/transforms.py +165 -0
- post_process/inswapper/CodeFormer/CodeFormer/basicsr/losses/__init__.py +26 -0
- post_process/inswapper/CodeFormer/CodeFormer/basicsr/losses/__pycache__/__init__.cpython-310.pyc +0 -0
- post_process/inswapper/CodeFormer/CodeFormer/basicsr/losses/__pycache__/loss_util.cpython-310.pyc +0 -0
- post_process/inswapper/CodeFormer/CodeFormer/basicsr/losses/__pycache__/losses.cpython-310.pyc +0 -0
- post_process/inswapper/CodeFormer/CodeFormer/basicsr/losses/loss_util.py +95 -0
- post_process/inswapper/CodeFormer/CodeFormer/basicsr/losses/losses.py +455 -0
CodeFormer/CodeFormer/weights/CodeFormer/your_models.txt
ADDED
File without changes
|
CodeFormer/CodeFormer/weights/facelib/your_models.txt
ADDED
File without changes
|
CodeFormer/CodeFormer/weights/realesrgan/your_models.txt
ADDED
File without changes
|
checkpoints/models/your_models.txt
ADDED
File without changes
|
post_process/checkpoints/your_models.txt
ADDED
File without changes
|
post_process/face_inpaint/inpaint.py
ADDED
@@ -0,0 +1,479 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from dataclasses import dataclass, field
|
2 |
+
from typing import List, Union, Optional, Tuple
|
3 |
+
from enum import IntEnum
|
4 |
+
import os
|
5 |
+
import cv2
|
6 |
+
import torch
|
7 |
+
import numpy as np
|
8 |
+
from PIL import Image, ImageDraw, ImageFilter, ImageOps
|
9 |
+
from torchvision.transforms.functional import to_pil_image
|
10 |
+
# import math
|
11 |
+
from diffusers import StableDiffusionInpaintPipeline
|
12 |
+
# from post_process.yoloface.face_detector import YoloDetector
|
13 |
+
|
14 |
+
|
15 |
+
MASK_MERGE_INVERT = ["None", "Merge", "Merge and Invert"]
|
16 |
+
|
17 |
+
|
18 |
+
def adetailer(sd_pipeline, yolodetector, images: list[Image.Image], prompt, negative_prompt, seed=42):
|
19 |
+
resolution = 512
|
20 |
+
# ad_model = "post_process/yoloface/weights/yolov5n-face.pt"
|
21 |
+
processed_input_imgs = []
|
22 |
+
for input_image in images:
|
23 |
+
pred = ultralytics_predict(yolodetector_model=yolodetector, image=input_image)
|
24 |
+
masks = pred_preprocessing(pred)
|
25 |
+
for i_mask, mask in enumerate(masks):
|
26 |
+
# # Only inpaint up to n faces
|
27 |
+
# if i_mask == n:
|
28 |
+
# break
|
29 |
+
blurred_mask = mask.filter(ImageFilter.GaussianBlur(8))
|
30 |
+
crop_region = get_crop_region(np.array(blurred_mask))
|
31 |
+
crop_region = expand_crop_region(crop_region, resolution, resolution, mask.width, mask.height)
|
32 |
+
x1, y1, x2, y2 = crop_region
|
33 |
+
paste_to = (x1, y1, x2-x1, y2-y1)
|
34 |
+
image_mask = blurred_mask.crop(crop_region)
|
35 |
+
image_mask = image_mask.resize((resolution, resolution), Image.LANCZOS)
|
36 |
+
|
37 |
+
image_masked = Image.new('RGBa', (input_image.width, input_image.height))
|
38 |
+
image_masked.paste(input_image.convert("RGBA"), mask=ImageOps.invert(blurred_mask.convert('L')))
|
39 |
+
overlay_image = image_masked.convert('RGBA')
|
40 |
+
|
41 |
+
patch_input_img = input_image.crop(crop_region)
|
42 |
+
patch_input_img = patch_input_img.resize((resolution, resolution), Image.LANCZOS)
|
43 |
+
processed_input_imgs.append([patch_input_img, paste_to, overlay_image])
|
44 |
+
|
45 |
+
denoising_strength = 0.4
|
46 |
+
|
47 |
+
pipe = StableDiffusionInpaintPipeline(
|
48 |
+
vae=sd_pipeline.vae,
|
49 |
+
text_encoder=sd_pipeline.text_encoder,
|
50 |
+
tokenizer=sd_pipeline.tokenizer,
|
51 |
+
unet=sd_pipeline.unet,
|
52 |
+
scheduler=sd_pipeline.scheduler,
|
53 |
+
requires_safety_checker=False,
|
54 |
+
safety_checker=None,
|
55 |
+
feature_extractor=sd_pipeline.feature_extractor,
|
56 |
+
).to('cuda')
|
57 |
+
|
58 |
+
generator = torch.Generator(device="cuda").manual_seed(seed)
|
59 |
+
|
60 |
+
inpaint_images = []
|
61 |
+
for i in range(len(processed_input_imgs)):
|
62 |
+
out = pipe(
|
63 |
+
prompt=prompt,
|
64 |
+
negative_prompt=negative_prompt,
|
65 |
+
image=[processed_input_imgs[i][0]],
|
66 |
+
mask_image=image_mask,
|
67 |
+
num_inference_steps=30,
|
68 |
+
strength=denoising_strength,
|
69 |
+
controlnet_conditioning_scale=1.0,
|
70 |
+
generator=generator
|
71 |
+
).images[0]
|
72 |
+
|
73 |
+
paste_to = processed_input_imgs[i][1]
|
74 |
+
overlay_image = processed_input_imgs[i][2]
|
75 |
+
|
76 |
+
input_image = apply_overlay(out, paste_to, overlay_image)
|
77 |
+
inpaint_images.append(input_image)
|
78 |
+
|
79 |
+
return inpaint_images
|
80 |
+
|
81 |
+
|
82 |
+
def get_crop_region(mask, pad=0):
|
83 |
+
"""finds a rectangular region that contains all masked ares in an image. Returns (x1, y1, x2, y2) coordinates of the rectangle.
|
84 |
+
For example, if a user has painted the top-right part of a 512x512 image", the result may be (256, 0, 512, 256)"""
|
85 |
+
|
86 |
+
h, w = mask.shape
|
87 |
+
|
88 |
+
crop_left = 0
|
89 |
+
for i in range(w):
|
90 |
+
if not (mask[:, i] == 0).all():
|
91 |
+
break
|
92 |
+
crop_left += 1
|
93 |
+
|
94 |
+
crop_right = 0
|
95 |
+
for i in reversed(range(w)):
|
96 |
+
if not (mask[:, i] == 0).all():
|
97 |
+
break
|
98 |
+
crop_right += 1
|
99 |
+
|
100 |
+
crop_top = 0
|
101 |
+
for i in range(h):
|
102 |
+
if not (mask[i] == 0).all():
|
103 |
+
break
|
104 |
+
crop_top += 1
|
105 |
+
|
106 |
+
crop_bottom = 0
|
107 |
+
for i in reversed(range(h)):
|
108 |
+
if not (mask[i] == 0).all():
|
109 |
+
break
|
110 |
+
crop_bottom += 1
|
111 |
+
|
112 |
+
return (
|
113 |
+
int(max(crop_left-pad, 0)),
|
114 |
+
int(max(crop_top-pad, 0)),
|
115 |
+
int(min(w - crop_right + pad, w)),
|
116 |
+
int(min(h - crop_bottom + pad, h))
|
117 |
+
)
|
118 |
+
|
119 |
+
def expand_crop_region(crop_region, processing_width, processing_height, image_width, image_height):
|
120 |
+
"""expands crop region get_crop_region() to match the ratio of the image the region will processed in; returns expanded region
|
121 |
+
for example, if user drew mask in a 128x32 region, and the dimensions for processing are 512x512, the region will be expanded to 128x128."""
|
122 |
+
|
123 |
+
x1, y1, x2, y2 = crop_region
|
124 |
+
|
125 |
+
ratio_crop_region = (x2 - x1) / (y2 - y1)
|
126 |
+
ratio_processing = processing_width / processing_height
|
127 |
+
|
128 |
+
if ratio_crop_region > ratio_processing:
|
129 |
+
desired_height = (x2 - x1) / ratio_processing
|
130 |
+
desired_height_diff = int(desired_height - (y2-y1))
|
131 |
+
y1 -= desired_height_diff//2
|
132 |
+
y2 += desired_height_diff - desired_height_diff//2
|
133 |
+
if y2 >= image_height:
|
134 |
+
diff = y2 - image_height
|
135 |
+
y2 -= diff
|
136 |
+
y1 -= diff
|
137 |
+
if y1 < 0:
|
138 |
+
y2 -= y1
|
139 |
+
y1 -= y1
|
140 |
+
if y2 >= image_height:
|
141 |
+
y2 = image_height
|
142 |
+
else:
|
143 |
+
desired_width = (y2 - y1) * ratio_processing
|
144 |
+
desired_width_diff = int(desired_width - (x2-x1))
|
145 |
+
x1 -= desired_width_diff//2
|
146 |
+
x2 += desired_width_diff - desired_width_diff//2
|
147 |
+
if x2 >= image_width:
|
148 |
+
diff = x2 - image_width
|
149 |
+
x2 -= diff
|
150 |
+
x1 -= diff
|
151 |
+
if x1 < 0:
|
152 |
+
x2 -= x1
|
153 |
+
x1 -= x1
|
154 |
+
if x2 >= image_width:
|
155 |
+
x2 = image_width
|
156 |
+
|
157 |
+
return x1, y1, x2, y2
|
158 |
+
|
159 |
+
@dataclass
|
160 |
+
class PredictOutput:
|
161 |
+
bboxes: List[List[Union[int, float]]] = field(default_factory=list)
|
162 |
+
masks: List[Image.Image] = field(default_factory=list)
|
163 |
+
preview: Optional[Image.Image] = None
|
164 |
+
|
165 |
+
def create_mask_from_bbox(
|
166 |
+
bboxes: List[List[float]], shape: Tuple[int, int]
|
167 |
+
) -> List[Image.Image]:
|
168 |
+
"""
|
169 |
+
Parameters
|
170 |
+
----------
|
171 |
+
bboxes: List[List[float]]
|
172 |
+
list of [x1, y1, x2, y2]
|
173 |
+
bounding boxes
|
174 |
+
shape: Tuple[int, int]
|
175 |
+
shape of the image (width, height)
|
176 |
+
|
177 |
+
Returns
|
178 |
+
-------
|
179 |
+
masks: List[Image.Image]
|
180 |
+
A list of masks
|
181 |
+
|
182 |
+
"""
|
183 |
+
masks = []
|
184 |
+
for bbox in bboxes:
|
185 |
+
mask = Image.new("L", shape, 0)
|
186 |
+
mask_draw = ImageDraw.Draw(mask)
|
187 |
+
mask_draw.rectangle(bbox, fill=255)
|
188 |
+
masks.append(mask)
|
189 |
+
return masks
|
190 |
+
|
191 |
+
def ultralytics_predict(
|
192 |
+
# model_path: str,
|
193 |
+
yolodector_model,
|
194 |
+
image: Image.Image,
|
195 |
+
confidence: float = 0.5,
|
196 |
+
device: str = "cuda",
|
197 |
+
) -> PredictOutput:
|
198 |
+
# model = YoloDetector(target_size=720, device=device, min_face=50)
|
199 |
+
bboxes, _ = yolodector_model.predict(np.array(image), conf_thres=confidence, iou_thres=0.5)
|
200 |
+
masks = create_mask_from_bbox(bboxes[0], image.size)
|
201 |
+
|
202 |
+
# model = YOLO(model_path) #old
|
203 |
+
# pred = model(image, conf=confidence, device=device) #old
|
204 |
+
# bboxes = pred[0].boxes.xyxy.cpu().numpy() #old
|
205 |
+
# if bboxes.size == 0:
|
206 |
+
# return PredictOutput()
|
207 |
+
# bboxes = bboxes.tolist()
|
208 |
+
|
209 |
+
# if pred[0].masks is None: #old
|
210 |
+
# masks = create_mask_from_bbox(bboxes, image.size) #old
|
211 |
+
# else: #old
|
212 |
+
# masks = mask_to_pil(pred[0].masks.data, image.size) #old
|
213 |
+
# preview = pred[0].plot() #old
|
214 |
+
# preview = cv2.cvtColor(preview, cv2.COLOR_BGR2RGB) #old
|
215 |
+
# preview = Image.fromarray(preview) #old
|
216 |
+
|
217 |
+
return PredictOutput(bboxes=bboxes[0], masks=masks, preview=image)
|
218 |
+
|
219 |
+
def mask_to_pil(masks, shape: Tuple[int, int]) -> List[Image.Image]:
|
220 |
+
"""
|
221 |
+
Parameters
|
222 |
+
----------
|
223 |
+
masks: torch.Tensor, dtype=torch.float32, shape=(N, H, W).
|
224 |
+
The device can be CUDA, but `to_pil_image` takes care of that.
|
225 |
+
|
226 |
+
shape: Tuple[int, int]
|
227 |
+
(width, height) of the original image
|
228 |
+
"""
|
229 |
+
n = masks.shape[0]
|
230 |
+
return [to_pil_image(masks[i], mode="L").resize(shape) for i in range(n)]
|
231 |
+
|
232 |
+
class MergeInvert(IntEnum):
|
233 |
+
NONE = 0
|
234 |
+
MERGE = 1
|
235 |
+
MERGE_INVERT = 2
|
236 |
+
|
237 |
+
def offset(img: Image.Image, x: int = 0, y: int = 0) -> Image.Image:
|
238 |
+
"""
|
239 |
+
The offset function takes an image and offsets it by a given x(→) and y(↑) value.
|
240 |
+
|
241 |
+
Parameters
|
242 |
+
----------
|
243 |
+
mask: Image.Image
|
244 |
+
Pass the mask image to the function
|
245 |
+
x: int
|
246 |
+
→
|
247 |
+
y: int
|
248 |
+
↑
|
249 |
+
|
250 |
+
Returns
|
251 |
+
-------
|
252 |
+
PIL.Image.Image
|
253 |
+
A new image that is offset by x and y
|
254 |
+
"""
|
255 |
+
return ImageChops.offset(img, x, -y)
|
256 |
+
|
257 |
+
|
258 |
+
def is_all_black(img: Image.Image) -> bool:
|
259 |
+
arr = np.array(img)
|
260 |
+
return cv2.countNonZero(arr) == 0
|
261 |
+
|
262 |
+
def _dilate(arr: np.ndarray, value: int) -> np.ndarray:
|
263 |
+
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (value, value))
|
264 |
+
return cv2.dilate(arr, kernel, iterations=1)
|
265 |
+
|
266 |
+
|
267 |
+
def _erode(arr: np.ndarray, value: int) -> np.ndarray:
|
268 |
+
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (value, value))
|
269 |
+
return cv2.erode(arr, kernel, iterations=1)
|
270 |
+
|
271 |
+
def dilate_erode(img: Image.Image, value: int) -> Image.Image:
|
272 |
+
"""
|
273 |
+
The dilate_erode function takes an image and a value.
|
274 |
+
If the value is positive, it dilates the image by that amount.
|
275 |
+
If the value is negative, it erodes the image by that amount.
|
276 |
+
|
277 |
+
Parameters
|
278 |
+
----------
|
279 |
+
img: PIL.Image.Image
|
280 |
+
the image to be processed
|
281 |
+
value: int
|
282 |
+
kernel size of dilation or erosion
|
283 |
+
|
284 |
+
Returns
|
285 |
+
-------
|
286 |
+
PIL.Image.Image
|
287 |
+
The image that has been dilated or eroded
|
288 |
+
"""
|
289 |
+
if value == 0:
|
290 |
+
return img
|
291 |
+
|
292 |
+
arr = np.array(img)
|
293 |
+
arr = _dilate(arr, value) if value > 0 else _erode(arr, -value)
|
294 |
+
|
295 |
+
return Image.fromarray(arr)
|
296 |
+
|
297 |
+
def mask_preprocess(
|
298 |
+
masks: List[Image.Image],
|
299 |
+
kernel: int = 0,
|
300 |
+
x_offset: int = 0,
|
301 |
+
y_offset: int = 0,
|
302 |
+
merge_invert: Union[int, 'MergeInvert', str] = MergeInvert.NONE,
|
303 |
+
) -> List[Image.Image]:
|
304 |
+
"""
|
305 |
+
The mask_preprocess function takes a list of masks and preprocesses them.
|
306 |
+
It dilates and erodes the masks, and offsets them by x_offset and y_offset.
|
307 |
+
|
308 |
+
Parameters
|
309 |
+
----------
|
310 |
+
masks: List[Image.Image]
|
311 |
+
A list of masks
|
312 |
+
kernel: int
|
313 |
+
kernel size of dilation or erosion
|
314 |
+
x_offset: int
|
315 |
+
→
|
316 |
+
y_offset: int
|
317 |
+
↑
|
318 |
+
|
319 |
+
Returns
|
320 |
+
-------
|
321 |
+
List[Image.Image]
|
322 |
+
A list of processed masks
|
323 |
+
"""
|
324 |
+
if not masks:
|
325 |
+
return []
|
326 |
+
|
327 |
+
if x_offset != 0 or y_offset != 0:
|
328 |
+
masks = [offset(m, x_offset, y_offset) for m in masks]
|
329 |
+
|
330 |
+
if kernel != 0:
|
331 |
+
masks = [dilate_erode(m, kernel) for m in masks]
|
332 |
+
masks = [m for m in masks if not is_all_black(m)]
|
333 |
+
|
334 |
+
return mask_merge_invert(masks, mode=merge_invert)
|
335 |
+
|
336 |
+
def mask_merge_invert(
|
337 |
+
masks: List[Image.Image], mode: Union[int, 'MergeInvert', str]
|
338 |
+
) -> List[Image.Image]:
|
339 |
+
if isinstance(mode, str):
|
340 |
+
mode = MASK_MERGE_INVERT.index(mode)
|
341 |
+
|
342 |
+
if mode == MergeInvert.NONE or not masks:
|
343 |
+
return masks
|
344 |
+
|
345 |
+
if mode == MergeInvert.MERGE:
|
346 |
+
return mask_merge(masks)
|
347 |
+
|
348 |
+
if mode == MergeInvert.MERGE_INVERT:
|
349 |
+
merged = mask_merge(masks)
|
350 |
+
return mask_invert(merged)
|
351 |
+
|
352 |
+
raise RuntimeError
|
353 |
+
|
354 |
+
def bbox_area(bbox: List[float]):
|
355 |
+
return (bbox[2] - bbox[0]) * (bbox[3] - bbox[1])
|
356 |
+
|
357 |
+
def filter_by_ratio(pred: PredictOutput, low: float, high: float) -> PredictOutput:
|
358 |
+
def is_in_ratio(bbox: List[float], low: float, high: float, orig_area: int) -> bool:
|
359 |
+
area = bbox_area(bbox)
|
360 |
+
return low <= area / orig_area <= high
|
361 |
+
|
362 |
+
if not pred.bboxes:
|
363 |
+
return pred
|
364 |
+
|
365 |
+
w, h = pred.preview.size
|
366 |
+
orig_area = w * h
|
367 |
+
items = len(pred.bboxes)
|
368 |
+
idx = [i for i in range(items) if is_in_ratio(pred.bboxes[i], low, high, orig_area)]
|
369 |
+
pred.bboxes = [pred.bboxes[i] for i in idx]
|
370 |
+
pred.masks = [pred.masks[i] for i in idx]
|
371 |
+
return pred
|
372 |
+
|
373 |
+
class SortBy(IntEnum):
|
374 |
+
NONE = 0
|
375 |
+
LEFT_TO_RIGHT = 1
|
376 |
+
CENTER_TO_EDGE = 2
|
377 |
+
AREA = 3
|
378 |
+
|
379 |
+
# Bbox sorting
|
380 |
+
def _key_left_to_right(bbox: List[float]) -> float:
|
381 |
+
"""
|
382 |
+
Left to right
|
383 |
+
|
384 |
+
Parameters
|
385 |
+
----------
|
386 |
+
bbox: list[float]
|
387 |
+
list of [x1, y1, x2, y2]
|
388 |
+
"""
|
389 |
+
return bbox[0]
|
390 |
+
|
391 |
+
|
392 |
+
def _key_center_to_edge(bbox: List[float], *, center: Tuple[float, float]) -> float:
|
393 |
+
"""
|
394 |
+
Center to edge
|
395 |
+
|
396 |
+
Parameters
|
397 |
+
----------
|
398 |
+
bbox: list[float]
|
399 |
+
list of [x1, y1, x2, y2]
|
400 |
+
image: Image.Image
|
401 |
+
the image
|
402 |
+
"""
|
403 |
+
bbox_center = ((bbox[0] + bbox[2]) / 2, (bbox[1] + bbox[3]) / 2)
|
404 |
+
return dist(center, bbox_center)
|
405 |
+
|
406 |
+
|
407 |
+
def _key_area(bbox: List[float]) -> float:
|
408 |
+
"""
|
409 |
+
Large to small
|
410 |
+
|
411 |
+
Parameters
|
412 |
+
----------
|
413 |
+
bbox: list[float]
|
414 |
+
list of [x1, y1, x2, y2]
|
415 |
+
"""
|
416 |
+
return -bbox_area(bbox)
|
417 |
+
|
418 |
+
def sort_bboxes(
|
419 |
+
pred: PredictOutput, order: Union[int, 'SortBy'] = SortBy.NONE
|
420 |
+
) -> PredictOutput:
|
421 |
+
if order == SortBy.NONE or len(pred.bboxes) <= 1:
|
422 |
+
return pred
|
423 |
+
|
424 |
+
if order == SortBy.LEFT_TO_RIGHT:
|
425 |
+
key = _key_left_to_right
|
426 |
+
elif order == SortBy.CENTER_TO_EDGE:
|
427 |
+
width, height = pred.preview.size
|
428 |
+
center = (width / 2, height / 2)
|
429 |
+
key = partial(_key_center_to_edge, center=center)
|
430 |
+
elif order == SortBy.AREA:
|
431 |
+
key = _key_area
|
432 |
+
else:
|
433 |
+
raise RuntimeError
|
434 |
+
|
435 |
+
items = len(pred.bboxes)
|
436 |
+
idx = sorted(range(items), key=lambda i: key(pred.bboxes[i]))
|
437 |
+
pred.bboxes = [pred.bboxes[i] for i in idx]
|
438 |
+
pred.masks = [pred.masks[i] for i in idx]
|
439 |
+
return pred
|
440 |
+
|
441 |
+
def filter_k_largest(pred: PredictOutput, k: int = 0) -> PredictOutput:
|
442 |
+
if not pred.bboxes or k == 0:
|
443 |
+
return pred
|
444 |
+
areas = [bbox_area(bbox) for bbox in pred.bboxes]
|
445 |
+
idx = np.argsort(areas)[-k:]
|
446 |
+
pred.bboxes = [pred.bboxes[i] for i in idx]
|
447 |
+
pred.masks = [pred.masks[i] for i in idx]
|
448 |
+
return pred
|
449 |
+
|
450 |
+
def pred_preprocessing(pred: PredictOutput) -> List[Image.Image]:
|
451 |
+
pred = filter_by_ratio(
|
452 |
+
pred, low=0.0, high=1.0
|
453 |
+
)
|
454 |
+
pred = filter_k_largest(pred, k=0)
|
455 |
+
pred = sort_bboxes(pred, SortBy.AREA)
|
456 |
+
return mask_preprocess(
|
457 |
+
pred.masks,
|
458 |
+
kernel=4,
|
459 |
+
x_offset=0,
|
460 |
+
y_offset=0,
|
461 |
+
merge_invert="None",
|
462 |
+
)
|
463 |
+
|
464 |
+
def apply_overlay(image, paste_loc, overlay):
|
465 |
+
if overlay is None:
|
466 |
+
return image
|
467 |
+
|
468 |
+
if paste_loc is not None:
|
469 |
+
x, y, w, h = paste_loc
|
470 |
+
base_image = Image.new('RGBA', (overlay.width, overlay.height))
|
471 |
+
image = image.resize((w, h), Image.LANCZOS)
|
472 |
+
base_image.paste(image, (x, y))
|
473 |
+
image = base_image
|
474 |
+
|
475 |
+
image = image.convert('RGBA')
|
476 |
+
image.alpha_composite(overlay)
|
477 |
+
image = image.convert('RGB')
|
478 |
+
|
479 |
+
return image
|
post_process/inswapper/CodeFormer/CodeFormer/README.md
ADDED
@@ -0,0 +1,123 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<p align="center">
|
2 |
+
<img src="assets/CodeFormer_logo.png" height=110>
|
3 |
+
</p>
|
4 |
+
|
5 |
+
## Towards Robust Blind Face Restoration with Codebook Lookup Transformer
|
6 |
+
|
7 |
+
[Paper](https://arxiv.org/abs/2206.11253) | [Project Page](https://shangchenzhou.com/projects/CodeFormer/) | [Video](https://youtu.be/d3VDpkXlueI)
|
8 |
+
|
9 |
+
|
10 |
+
<a href="https://colab.research.google.com/drive/1m52PNveE4PBhYrecj34cnpEeiHcC5LTb?usp=sharing"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="google colab logo"></a> [![Replicate](https://img.shields.io/badge/Demo-%F0%9F%9A%80%20Replicate-blue)](https://replicate.com/sczhou/codeformer) ![visitors](https://visitor-badge.glitch.me/badge?page_id=sczhou/CodeFormer)
|
11 |
+
|
12 |
+
[Shangchen Zhou](https://shangchenzhou.com/), [Kelvin C.K. Chan](https://ckkelvinchan.github.io/), [Chongyi Li](https://li-chongyi.github.io/), [Chen Change Loy](https://www.mmlab-ntu.com/person/ccloy/)
|
13 |
+
|
14 |
+
S-Lab, Nanyang Technological University
|
15 |
+
|
16 |
+
<img src="assets/network.jpg" width="800px"/>
|
17 |
+
|
18 |
+
|
19 |
+
:star: If CodeFormer is helpful to your images or projects, please help star this repo. Thanks! :hugs:
|
20 |
+
|
21 |
+
### Update
|
22 |
+
|
23 |
+
- **2022.09.09**: Integrated to :rocket: [Replicate](https://replicate.com/). Try out online demo! [![Replicate](https://img.shields.io/badge/Demo-%F0%9F%9A%80%20Replicate-blue)](https://replicate.com/sczhou/codeformer)
|
24 |
+
- **2022.09.04**: Add face upsampling `--face_upsample` for high-resolution AI-created face enhancement.
|
25 |
+
- **2022.08.23**: Some modifications on face detection and fusion for better AI-created face enhancement.
|
26 |
+
- **2022.08.07**: Integrate [Real-ESRGAN](https://github.com/xinntao/Real-ESRGAN) to support background image enhancement.
|
27 |
+
- **2022.07.29**: Integrate new face detectors of `['RetinaFace'(default), 'YOLOv5']`.
|
28 |
+
- **2022.07.17**: Add Colab demo of CodeFormer. <a href="https://colab.research.google.com/drive/1m52PNveE4PBhYrecj34cnpEeiHcC5LTb?usp=sharing"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="google colab logo"></a>
|
29 |
+
- **2022.07.16**: Release inference code for face restoration. :blush:
|
30 |
+
- **2022.06.21**: This repo is created.
|
31 |
+
|
32 |
+
### TODO
|
33 |
+
- [ ] Add checkpoint for face inpainting
|
34 |
+
- [ ] Add training code and config files
|
35 |
+
- [x] ~~Add background image enhancement~~
|
36 |
+
|
37 |
+
#### Face Restoration
|
38 |
+
|
39 |
+
<img src="assets/restoration_result1.png" width="400px"/> <img src="assets/restoration_result2.png" width="400px"/>
|
40 |
+
<img src="assets/restoration_result3.png" width="400px"/> <img src="assets/restoration_result4.png" width="400px"/>
|
41 |
+
|
42 |
+
#### Face Color Enhancement and Restoration
|
43 |
+
|
44 |
+
<img src="assets/color_enhancement_result1.png" width="400px"/> <img src="assets/color_enhancement_result2.png" width="400px"/>
|
45 |
+
|
46 |
+
#### Face Inpainting
|
47 |
+
|
48 |
+
<img src="assets/inpainting_result1.png" width="400px"/> <img src="assets/inpainting_result2.png" width="400px"/>
|
49 |
+
|
50 |
+
|
51 |
+
|
52 |
+
### Dependencies and Installation
|
53 |
+
|
54 |
+
- Pytorch >= 1.7.1
|
55 |
+
- CUDA >= 10.1
|
56 |
+
- Other required packages in `requirements.txt`
|
57 |
+
```
|
58 |
+
# git clone this repository
|
59 |
+
git clone https://github.com/sczhou/CodeFormer
|
60 |
+
cd CodeFormer
|
61 |
+
|
62 |
+
# create new anaconda env
|
63 |
+
conda create -n codeformer python=3.8 -y
|
64 |
+
conda activate codeformer
|
65 |
+
|
66 |
+
# install python dependencies
|
67 |
+
pip3 install -r requirements.txt
|
68 |
+
python basicsr/setup.py develop
|
69 |
+
```
|
70 |
+
<!-- conda install -c conda-forge dlib -->
|
71 |
+
|
72 |
+
### Quick Inference
|
73 |
+
|
74 |
+
##### Download Pre-trained Models:
|
75 |
+
Download the facelib pretrained models from [[Google Drive](https://drive.google.com/drive/folders/1b_3qwrzY_kTQh0-SnBoGBgOrJ_PLZSKm?usp=sharing) | [OneDrive](https://entuedu-my.sharepoint.com/:f:/g/personal/s200094_e_ntu_edu_sg/EvDxR7FcAbZMp_MA9ouq7aQB8XTppMb3-T0uGZ_2anI2mg?e=DXsJFo)] to the `weights/facelib` folder. You can manually download the pretrained models OR download by runing the following command.
|
76 |
+
```
|
77 |
+
python scripts/download_pretrained_models.py facelib
|
78 |
+
```
|
79 |
+
|
80 |
+
Download the CodeFormer pretrained models from [[Google Drive](https://drive.google.com/drive/folders/1CNNByjHDFt0b95q54yMVp6Ifo5iuU6QS?usp=sharing) | [OneDrive](https://entuedu-my.sharepoint.com/:f:/g/personal/s200094_e_ntu_edu_sg/EoKFj4wo8cdIn2-TY2IV6CYBhZ0pIG4kUOeHdPR_A5nlbg?e=AO8UN9)] to the `weights/CodeFormer` folder. You can manually download the pretrained models OR download by runing the following command.
|
81 |
+
```
|
82 |
+
python scripts/download_pretrained_models.py CodeFormer
|
83 |
+
```
|
84 |
+
|
85 |
+
##### Prepare Testing Data:
|
86 |
+
You can put the testing images in the `inputs/TestWhole` folder. If you would like to test on cropped and aligned faces, you can put them in the `inputs/cropped_faces` folder.
|
87 |
+
|
88 |
+
|
89 |
+
##### Testing on Face Restoration:
|
90 |
+
```
|
91 |
+
# For cropped and aligned faces
|
92 |
+
python inference_codeformer.py --w 0.5 --has_aligned --test_path [input folder]
|
93 |
+
|
94 |
+
# For the whole images
|
95 |
+
# Add '--bg_upsampler realesrgan' to enhance the background regions with Real-ESRGAN
|
96 |
+
# Add '--face_upsample' to further upsample restorated face with Real-ESRGAN
|
97 |
+
python inference_codeformer.py --w 0.7 --test_path [input folder]
|
98 |
+
```
|
99 |
+
|
100 |
+
NOTE that *w* is in [0, 1]. Generally, smaller *w* tends to produce a higher-quality result, while larger *w* yields a higher-fidelity result.
|
101 |
+
|
102 |
+
The results will be saved in the `results` folder.
|
103 |
+
|
104 |
+
### Citation
|
105 |
+
If our work is useful for your research, please consider citing:
|
106 |
+
|
107 |
+
@article{zhou2022codeformer,
|
108 |
+
author = {Zhou, Shangchen and Chan, Kelvin C.K. and Li, Chongyi and Loy, Chen Change},
|
109 |
+
title = {Towards Robust Blind Face Restoration with Codebook Lookup TransFormer},
|
110 |
+
journal = {arXiv preprint arXiv:2206.11253},
|
111 |
+
year = {2022}
|
112 |
+
}
|
113 |
+
|
114 |
+
### License
|
115 |
+
|
116 |
+
<a rel="license" href="http://creativecommons.org/licenses/by-nc-sa/4.0/"><img alt="Creative Commons License" style="border-width:0" src="https://i.creativecommons.org/l/by-nc-sa/4.0/88x31.png" /></a><br />This work is licensed under a <a rel="license" href="http://creativecommons.org/licenses/by-nc-sa/4.0/">Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License</a>.
|
117 |
+
|
118 |
+
### Acknowledgement
|
119 |
+
|
120 |
+
This project is based on [BasicSR](https://github.com/XPixelGroup/BasicSR). We also borrow some codes from [Unleashing Transformers](https://github.com/samb-t/unleashing-transformers), [YOLOv5-face](https://github.com/deepcam-cn/yolov5-face), and [FaceXLib](https://github.com/xinntao/facexlib). Thanks for their awesome works.
|
121 |
+
|
122 |
+
### Contact
|
123 |
+
If you have any question, please feel free to reach me out at `[email protected]`.
|
post_process/inswapper/CodeFormer/CodeFormer/assets/CodeFormer_logo.png
ADDED
post_process/inswapper/CodeFormer/CodeFormer/assets/color_enhancement_result1.png
ADDED
post_process/inswapper/CodeFormer/CodeFormer/assets/color_enhancement_result2.png
ADDED
post_process/inswapper/CodeFormer/CodeFormer/assets/inpainting_result1.png
ADDED
post_process/inswapper/CodeFormer/CodeFormer/assets/inpainting_result2.png
ADDED
post_process/inswapper/CodeFormer/CodeFormer/assets/network.jpg
ADDED
post_process/inswapper/CodeFormer/CodeFormer/assets/restoration_result1.png
ADDED
post_process/inswapper/CodeFormer/CodeFormer/assets/restoration_result2.png
ADDED
post_process/inswapper/CodeFormer/CodeFormer/assets/restoration_result3.png
ADDED
post_process/inswapper/CodeFormer/CodeFormer/assets/restoration_result4.png
ADDED
post_process/inswapper/CodeFormer/CodeFormer/basicsr/VERSION
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.3.2
|
post_process/inswapper/CodeFormer/CodeFormer/basicsr/__init__.py
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# https://github.com/xinntao/BasicSR
|
2 |
+
# flake8: noqa
|
3 |
+
from .archs import *
|
4 |
+
from .data import *
|
5 |
+
from .losses import *
|
6 |
+
from .metrics import *
|
7 |
+
from .models import *
|
8 |
+
from .ops import *
|
9 |
+
from .train import *
|
10 |
+
from .utils import *
|
11 |
+
from .version import __gitsha__, __version__
|
post_process/inswapper/CodeFormer/CodeFormer/basicsr/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (371 Bytes). View file
|
|
post_process/inswapper/CodeFormer/CodeFormer/basicsr/__pycache__/train.cpython-310.pyc
ADDED
Binary file (6.34 kB). View file
|
|
post_process/inswapper/CodeFormer/CodeFormer/basicsr/__pycache__/version.cpython-310.pyc
ADDED
Binary file (249 Bytes). View file
|
|
post_process/inswapper/CodeFormer/CodeFormer/basicsr/archs/__init__.py
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import importlib
|
2 |
+
from copy import deepcopy
|
3 |
+
from os import path as osp
|
4 |
+
|
5 |
+
from basicsr.utils import get_root_logger, scandir
|
6 |
+
from basicsr.utils.registry import ARCH_REGISTRY
|
7 |
+
|
8 |
+
__all__ = ['build_network']
|
9 |
+
|
10 |
+
# automatically scan and import arch modules for registry
|
11 |
+
# scan all the files under the 'archs' folder and collect files ending with
|
12 |
+
# '_arch.py'
|
13 |
+
arch_folder = osp.dirname(osp.abspath(__file__))
|
14 |
+
arch_filenames = [osp.splitext(osp.basename(v))[0] for v in scandir(arch_folder) if v.endswith('_arch.py')]
|
15 |
+
# import all the arch modules
|
16 |
+
_arch_modules = [importlib.import_module(f'basicsr.archs.{file_name}') for file_name in arch_filenames]
|
17 |
+
|
18 |
+
|
19 |
+
def build_network(opt):
|
20 |
+
opt = deepcopy(opt)
|
21 |
+
network_type = opt.pop('type')
|
22 |
+
net = ARCH_REGISTRY.get(network_type)(**opt)
|
23 |
+
logger = get_root_logger()
|
24 |
+
logger.info(f'Network [{net.__class__.__name__}] is created.')
|
25 |
+
return net
|
post_process/inswapper/CodeFormer/CodeFormer/basicsr/archs/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (1.16 kB). View file
|
|
post_process/inswapper/CodeFormer/CodeFormer/basicsr/archs/__pycache__/arcface_arch.cpython-310.pyc
ADDED
Binary file (7.38 kB). View file
|
|
post_process/inswapper/CodeFormer/CodeFormer/basicsr/archs/__pycache__/arch_util.cpython-310.pyc
ADDED
Binary file (10.8 kB). View file
|
|
post_process/inswapper/CodeFormer/CodeFormer/basicsr/archs/__pycache__/codeformer_arch.cpython-310.pyc
ADDED
Binary file (9.22 kB). View file
|
|
post_process/inswapper/CodeFormer/CodeFormer/basicsr/archs/__pycache__/rrdbnet_arch.cpython-310.pyc
ADDED
Binary file (4.46 kB). View file
|
|
post_process/inswapper/CodeFormer/CodeFormer/basicsr/archs/__pycache__/vgg_arch.cpython-310.pyc
ADDED
Binary file (4.86 kB). View file
|
|
post_process/inswapper/CodeFormer/CodeFormer/basicsr/archs/__pycache__/vqgan_arch.cpython-310.pyc
ADDED
Binary file (11.1 kB). View file
|
|
post_process/inswapper/CodeFormer/CodeFormer/basicsr/archs/arcface_arch.py
ADDED
@@ -0,0 +1,245 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch.nn as nn
|
2 |
+
from basicsr.utils.registry import ARCH_REGISTRY
|
3 |
+
|
4 |
+
|
5 |
+
def conv3x3(inplanes, outplanes, stride=1):
|
6 |
+
"""A simple wrapper for 3x3 convolution with padding.
|
7 |
+
|
8 |
+
Args:
|
9 |
+
inplanes (int): Channel number of inputs.
|
10 |
+
outplanes (int): Channel number of outputs.
|
11 |
+
stride (int): Stride in convolution. Default: 1.
|
12 |
+
"""
|
13 |
+
return nn.Conv2d(inplanes, outplanes, kernel_size=3, stride=stride, padding=1, bias=False)
|
14 |
+
|
15 |
+
|
16 |
+
class BasicBlock(nn.Module):
|
17 |
+
"""Basic residual block used in the ResNetArcFace architecture.
|
18 |
+
|
19 |
+
Args:
|
20 |
+
inplanes (int): Channel number of inputs.
|
21 |
+
planes (int): Channel number of outputs.
|
22 |
+
stride (int): Stride in convolution. Default: 1.
|
23 |
+
downsample (nn.Module): The downsample module. Default: None.
|
24 |
+
"""
|
25 |
+
expansion = 1 # output channel expansion ratio
|
26 |
+
|
27 |
+
def __init__(self, inplanes, planes, stride=1, downsample=None):
|
28 |
+
super(BasicBlock, self).__init__()
|
29 |
+
self.conv1 = conv3x3(inplanes, planes, stride)
|
30 |
+
self.bn1 = nn.BatchNorm2d(planes)
|
31 |
+
self.relu = nn.ReLU(inplace=True)
|
32 |
+
self.conv2 = conv3x3(planes, planes)
|
33 |
+
self.bn2 = nn.BatchNorm2d(planes)
|
34 |
+
self.downsample = downsample
|
35 |
+
self.stride = stride
|
36 |
+
|
37 |
+
def forward(self, x):
|
38 |
+
residual = x
|
39 |
+
|
40 |
+
out = self.conv1(x)
|
41 |
+
out = self.bn1(out)
|
42 |
+
out = self.relu(out)
|
43 |
+
|
44 |
+
out = self.conv2(out)
|
45 |
+
out = self.bn2(out)
|
46 |
+
|
47 |
+
if self.downsample is not None:
|
48 |
+
residual = self.downsample(x)
|
49 |
+
|
50 |
+
out += residual
|
51 |
+
out = self.relu(out)
|
52 |
+
|
53 |
+
return out
|
54 |
+
|
55 |
+
|
56 |
+
class IRBlock(nn.Module):
|
57 |
+
"""Improved residual block (IR Block) used in the ResNetArcFace architecture.
|
58 |
+
|
59 |
+
Args:
|
60 |
+
inplanes (int): Channel number of inputs.
|
61 |
+
planes (int): Channel number of outputs.
|
62 |
+
stride (int): Stride in convolution. Default: 1.
|
63 |
+
downsample (nn.Module): The downsample module. Default: None.
|
64 |
+
use_se (bool): Whether use the SEBlock (squeeze and excitation block). Default: True.
|
65 |
+
"""
|
66 |
+
expansion = 1 # output channel expansion ratio
|
67 |
+
|
68 |
+
def __init__(self, inplanes, planes, stride=1, downsample=None, use_se=True):
|
69 |
+
super(IRBlock, self).__init__()
|
70 |
+
self.bn0 = nn.BatchNorm2d(inplanes)
|
71 |
+
self.conv1 = conv3x3(inplanes, inplanes)
|
72 |
+
self.bn1 = nn.BatchNorm2d(inplanes)
|
73 |
+
self.prelu = nn.PReLU()
|
74 |
+
self.conv2 = conv3x3(inplanes, planes, stride)
|
75 |
+
self.bn2 = nn.BatchNorm2d(planes)
|
76 |
+
self.downsample = downsample
|
77 |
+
self.stride = stride
|
78 |
+
self.use_se = use_se
|
79 |
+
if self.use_se:
|
80 |
+
self.se = SEBlock(planes)
|
81 |
+
|
82 |
+
def forward(self, x):
|
83 |
+
residual = x
|
84 |
+
out = self.bn0(x)
|
85 |
+
out = self.conv1(out)
|
86 |
+
out = self.bn1(out)
|
87 |
+
out = self.prelu(out)
|
88 |
+
|
89 |
+
out = self.conv2(out)
|
90 |
+
out = self.bn2(out)
|
91 |
+
if self.use_se:
|
92 |
+
out = self.se(out)
|
93 |
+
|
94 |
+
if self.downsample is not None:
|
95 |
+
residual = self.downsample(x)
|
96 |
+
|
97 |
+
out += residual
|
98 |
+
out = self.prelu(out)
|
99 |
+
|
100 |
+
return out
|
101 |
+
|
102 |
+
|
103 |
+
class Bottleneck(nn.Module):
|
104 |
+
"""Bottleneck block used in the ResNetArcFace architecture.
|
105 |
+
|
106 |
+
Args:
|
107 |
+
inplanes (int): Channel number of inputs.
|
108 |
+
planes (int): Channel number of outputs.
|
109 |
+
stride (int): Stride in convolution. Default: 1.
|
110 |
+
downsample (nn.Module): The downsample module. Default: None.
|
111 |
+
"""
|
112 |
+
expansion = 4 # output channel expansion ratio
|
113 |
+
|
114 |
+
def __init__(self, inplanes, planes, stride=1, downsample=None):
|
115 |
+
super(Bottleneck, self).__init__()
|
116 |
+
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
|
117 |
+
self.bn1 = nn.BatchNorm2d(planes)
|
118 |
+
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
|
119 |
+
self.bn2 = nn.BatchNorm2d(planes)
|
120 |
+
self.conv3 = nn.Conv2d(planes, planes * self.expansion, kernel_size=1, bias=False)
|
121 |
+
self.bn3 = nn.BatchNorm2d(planes * self.expansion)
|
122 |
+
self.relu = nn.ReLU(inplace=True)
|
123 |
+
self.downsample = downsample
|
124 |
+
self.stride = stride
|
125 |
+
|
126 |
+
def forward(self, x):
|
127 |
+
residual = x
|
128 |
+
|
129 |
+
out = self.conv1(x)
|
130 |
+
out = self.bn1(out)
|
131 |
+
out = self.relu(out)
|
132 |
+
|
133 |
+
out = self.conv2(out)
|
134 |
+
out = self.bn2(out)
|
135 |
+
out = self.relu(out)
|
136 |
+
|
137 |
+
out = self.conv3(out)
|
138 |
+
out = self.bn3(out)
|
139 |
+
|
140 |
+
if self.downsample is not None:
|
141 |
+
residual = self.downsample(x)
|
142 |
+
|
143 |
+
out += residual
|
144 |
+
out = self.relu(out)
|
145 |
+
|
146 |
+
return out
|
147 |
+
|
148 |
+
|
149 |
+
class SEBlock(nn.Module):
|
150 |
+
"""The squeeze-and-excitation block (SEBlock) used in the IRBlock.
|
151 |
+
|
152 |
+
Args:
|
153 |
+
channel (int): Channel number of inputs.
|
154 |
+
reduction (int): Channel reduction ration. Default: 16.
|
155 |
+
"""
|
156 |
+
|
157 |
+
def __init__(self, channel, reduction=16):
|
158 |
+
super(SEBlock, self).__init__()
|
159 |
+
self.avg_pool = nn.AdaptiveAvgPool2d(1) # pool to 1x1 without spatial information
|
160 |
+
self.fc = nn.Sequential(
|
161 |
+
nn.Linear(channel, channel // reduction), nn.PReLU(), nn.Linear(channel // reduction, channel),
|
162 |
+
nn.Sigmoid())
|
163 |
+
|
164 |
+
def forward(self, x):
|
165 |
+
b, c, _, _ = x.size()
|
166 |
+
y = self.avg_pool(x).view(b, c)
|
167 |
+
y = self.fc(y).view(b, c, 1, 1)
|
168 |
+
return x * y
|
169 |
+
|
170 |
+
|
171 |
+
@ARCH_REGISTRY.register()
|
172 |
+
class ResNetArcFace(nn.Module):
|
173 |
+
"""ArcFace with ResNet architectures.
|
174 |
+
|
175 |
+
Ref: ArcFace: Additive Angular Margin Loss for Deep Face Recognition.
|
176 |
+
|
177 |
+
Args:
|
178 |
+
block (str): Block used in the ArcFace architecture.
|
179 |
+
layers (tuple(int)): Block numbers in each layer.
|
180 |
+
use_se (bool): Whether use the SEBlock (squeeze and excitation block). Default: True.
|
181 |
+
"""
|
182 |
+
|
183 |
+
def __init__(self, block, layers, use_se=True):
|
184 |
+
if block == 'IRBlock':
|
185 |
+
block = IRBlock
|
186 |
+
self.inplanes = 64
|
187 |
+
self.use_se = use_se
|
188 |
+
super(ResNetArcFace, self).__init__()
|
189 |
+
|
190 |
+
self.conv1 = nn.Conv2d(1, 64, kernel_size=3, padding=1, bias=False)
|
191 |
+
self.bn1 = nn.BatchNorm2d(64)
|
192 |
+
self.prelu = nn.PReLU()
|
193 |
+
self.maxpool = nn.MaxPool2d(kernel_size=2, stride=2)
|
194 |
+
self.layer1 = self._make_layer(block, 64, layers[0])
|
195 |
+
self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
|
196 |
+
self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
|
197 |
+
self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
|
198 |
+
self.bn4 = nn.BatchNorm2d(512)
|
199 |
+
self.dropout = nn.Dropout()
|
200 |
+
self.fc5 = nn.Linear(512 * 8 * 8, 512)
|
201 |
+
self.bn5 = nn.BatchNorm1d(512)
|
202 |
+
|
203 |
+
# initialization
|
204 |
+
for m in self.modules():
|
205 |
+
if isinstance(m, nn.Conv2d):
|
206 |
+
nn.init.xavier_normal_(m.weight)
|
207 |
+
elif isinstance(m, nn.BatchNorm2d) or isinstance(m, nn.BatchNorm1d):
|
208 |
+
nn.init.constant_(m.weight, 1)
|
209 |
+
nn.init.constant_(m.bias, 0)
|
210 |
+
elif isinstance(m, nn.Linear):
|
211 |
+
nn.init.xavier_normal_(m.weight)
|
212 |
+
nn.init.constant_(m.bias, 0)
|
213 |
+
|
214 |
+
def _make_layer(self, block, planes, num_blocks, stride=1):
|
215 |
+
downsample = None
|
216 |
+
if stride != 1 or self.inplanes != planes * block.expansion:
|
217 |
+
downsample = nn.Sequential(
|
218 |
+
nn.Conv2d(self.inplanes, planes * block.expansion, kernel_size=1, stride=stride, bias=False),
|
219 |
+
nn.BatchNorm2d(planes * block.expansion),
|
220 |
+
)
|
221 |
+
layers = []
|
222 |
+
layers.append(block(self.inplanes, planes, stride, downsample, use_se=self.use_se))
|
223 |
+
self.inplanes = planes
|
224 |
+
for _ in range(1, num_blocks):
|
225 |
+
layers.append(block(self.inplanes, planes, use_se=self.use_se))
|
226 |
+
|
227 |
+
return nn.Sequential(*layers)
|
228 |
+
|
229 |
+
def forward(self, x):
|
230 |
+
x = self.conv1(x)
|
231 |
+
x = self.bn1(x)
|
232 |
+
x = self.prelu(x)
|
233 |
+
x = self.maxpool(x)
|
234 |
+
|
235 |
+
x = self.layer1(x)
|
236 |
+
x = self.layer2(x)
|
237 |
+
x = self.layer3(x)
|
238 |
+
x = self.layer4(x)
|
239 |
+
x = self.bn4(x)
|
240 |
+
x = self.dropout(x)
|
241 |
+
x = x.view(x.size(0), -1)
|
242 |
+
x = self.fc5(x)
|
243 |
+
x = self.bn5(x)
|
244 |
+
|
245 |
+
return x
|
post_process/inswapper/CodeFormer/CodeFormer/basicsr/archs/arch_util.py
ADDED
@@ -0,0 +1,318 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import collections.abc
|
2 |
+
import math
|
3 |
+
import torch
|
4 |
+
import torchvision
|
5 |
+
import warnings
|
6 |
+
from distutils.version import LooseVersion
|
7 |
+
from itertools import repeat
|
8 |
+
from torch import nn as nn
|
9 |
+
from torch.nn import functional as F
|
10 |
+
from torch.nn import init as init
|
11 |
+
from torch.nn.modules.batchnorm import _BatchNorm
|
12 |
+
|
13 |
+
from basicsr.ops.dcn import ModulatedDeformConvPack, modulated_deform_conv
|
14 |
+
from basicsr.utils import get_root_logger
|
15 |
+
|
16 |
+
|
17 |
+
@torch.no_grad()
|
18 |
+
def default_init_weights(module_list, scale=1, bias_fill=0, **kwargs):
|
19 |
+
"""Initialize network weights.
|
20 |
+
|
21 |
+
Args:
|
22 |
+
module_list (list[nn.Module] | nn.Module): Modules to be initialized.
|
23 |
+
scale (float): Scale initialized weights, especially for residual
|
24 |
+
blocks. Default: 1.
|
25 |
+
bias_fill (float): The value to fill bias. Default: 0
|
26 |
+
kwargs (dict): Other arguments for initialization function.
|
27 |
+
"""
|
28 |
+
if not isinstance(module_list, list):
|
29 |
+
module_list = [module_list]
|
30 |
+
for module in module_list:
|
31 |
+
for m in module.modules():
|
32 |
+
if isinstance(m, nn.Conv2d):
|
33 |
+
init.kaiming_normal_(m.weight, **kwargs)
|
34 |
+
m.weight.data *= scale
|
35 |
+
if m.bias is not None:
|
36 |
+
m.bias.data.fill_(bias_fill)
|
37 |
+
elif isinstance(m, nn.Linear):
|
38 |
+
init.kaiming_normal_(m.weight, **kwargs)
|
39 |
+
m.weight.data *= scale
|
40 |
+
if m.bias is not None:
|
41 |
+
m.bias.data.fill_(bias_fill)
|
42 |
+
elif isinstance(m, _BatchNorm):
|
43 |
+
init.constant_(m.weight, 1)
|
44 |
+
if m.bias is not None:
|
45 |
+
m.bias.data.fill_(bias_fill)
|
46 |
+
|
47 |
+
|
48 |
+
def make_layer(basic_block, num_basic_block, **kwarg):
|
49 |
+
"""Make layers by stacking the same blocks.
|
50 |
+
|
51 |
+
Args:
|
52 |
+
basic_block (nn.module): nn.module class for basic block.
|
53 |
+
num_basic_block (int): number of blocks.
|
54 |
+
|
55 |
+
Returns:
|
56 |
+
nn.Sequential: Stacked blocks in nn.Sequential.
|
57 |
+
"""
|
58 |
+
layers = []
|
59 |
+
for _ in range(num_basic_block):
|
60 |
+
layers.append(basic_block(**kwarg))
|
61 |
+
return nn.Sequential(*layers)
|
62 |
+
|
63 |
+
|
64 |
+
class ResidualBlockNoBN(nn.Module):
|
65 |
+
"""Residual block without BN.
|
66 |
+
|
67 |
+
It has a style of:
|
68 |
+
---Conv-ReLU-Conv-+-
|
69 |
+
|________________|
|
70 |
+
|
71 |
+
Args:
|
72 |
+
num_feat (int): Channel number of intermediate features.
|
73 |
+
Default: 64.
|
74 |
+
res_scale (float): Residual scale. Default: 1.
|
75 |
+
pytorch_init (bool): If set to True, use pytorch default init,
|
76 |
+
otherwise, use default_init_weights. Default: False.
|
77 |
+
"""
|
78 |
+
|
79 |
+
def __init__(self, num_feat=64, res_scale=1, pytorch_init=False):
|
80 |
+
super(ResidualBlockNoBN, self).__init__()
|
81 |
+
self.res_scale = res_scale
|
82 |
+
self.conv1 = nn.Conv2d(num_feat, num_feat, 3, 1, 1, bias=True)
|
83 |
+
self.conv2 = nn.Conv2d(num_feat, num_feat, 3, 1, 1, bias=True)
|
84 |
+
self.relu = nn.ReLU(inplace=True)
|
85 |
+
|
86 |
+
if not pytorch_init:
|
87 |
+
default_init_weights([self.conv1, self.conv2], 0.1)
|
88 |
+
|
89 |
+
def forward(self, x):
|
90 |
+
identity = x
|
91 |
+
out = self.conv2(self.relu(self.conv1(x)))
|
92 |
+
return identity + out * self.res_scale
|
93 |
+
|
94 |
+
|
95 |
+
class Upsample(nn.Sequential):
|
96 |
+
"""Upsample module.
|
97 |
+
|
98 |
+
Args:
|
99 |
+
scale (int): Scale factor. Supported scales: 2^n and 3.
|
100 |
+
num_feat (int): Channel number of intermediate features.
|
101 |
+
"""
|
102 |
+
|
103 |
+
def __init__(self, scale, num_feat):
|
104 |
+
m = []
|
105 |
+
if (scale & (scale - 1)) == 0: # scale = 2^n
|
106 |
+
for _ in range(int(math.log(scale, 2))):
|
107 |
+
m.append(nn.Conv2d(num_feat, 4 * num_feat, 3, 1, 1))
|
108 |
+
m.append(nn.PixelShuffle(2))
|
109 |
+
elif scale == 3:
|
110 |
+
m.append(nn.Conv2d(num_feat, 9 * num_feat, 3, 1, 1))
|
111 |
+
m.append(nn.PixelShuffle(3))
|
112 |
+
else:
|
113 |
+
raise ValueError(f'scale {scale} is not supported. Supported scales: 2^n and 3.')
|
114 |
+
super(Upsample, self).__init__(*m)
|
115 |
+
|
116 |
+
|
117 |
+
def flow_warp(x, flow, interp_mode='bilinear', padding_mode='zeros', align_corners=True):
|
118 |
+
"""Warp an image or feature map with optical flow.
|
119 |
+
|
120 |
+
Args:
|
121 |
+
x (Tensor): Tensor with size (n, c, h, w).
|
122 |
+
flow (Tensor): Tensor with size (n, h, w, 2), normal value.
|
123 |
+
interp_mode (str): 'nearest' or 'bilinear'. Default: 'bilinear'.
|
124 |
+
padding_mode (str): 'zeros' or 'border' or 'reflection'.
|
125 |
+
Default: 'zeros'.
|
126 |
+
align_corners (bool): Before pytorch 1.3, the default value is
|
127 |
+
align_corners=True. After pytorch 1.3, the default value is
|
128 |
+
align_corners=False. Here, we use the True as default.
|
129 |
+
|
130 |
+
Returns:
|
131 |
+
Tensor: Warped image or feature map.
|
132 |
+
"""
|
133 |
+
assert x.size()[-2:] == flow.size()[1:3]
|
134 |
+
_, _, h, w = x.size()
|
135 |
+
# create mesh grid
|
136 |
+
grid_y, grid_x = torch.meshgrid(torch.arange(0, h).type_as(x), torch.arange(0, w).type_as(x))
|
137 |
+
grid = torch.stack((grid_x, grid_y), 2).float() # W(x), H(y), 2
|
138 |
+
grid.requires_grad = False
|
139 |
+
|
140 |
+
vgrid = grid + flow
|
141 |
+
# scale grid to [-1,1]
|
142 |
+
vgrid_x = 2.0 * vgrid[:, :, :, 0] / max(w - 1, 1) - 1.0
|
143 |
+
vgrid_y = 2.0 * vgrid[:, :, :, 1] / max(h - 1, 1) - 1.0
|
144 |
+
vgrid_scaled = torch.stack((vgrid_x, vgrid_y), dim=3)
|
145 |
+
output = F.grid_sample(x, vgrid_scaled, mode=interp_mode, padding_mode=padding_mode, align_corners=align_corners)
|
146 |
+
|
147 |
+
# TODO, what if align_corners=False
|
148 |
+
return output
|
149 |
+
|
150 |
+
|
151 |
+
def resize_flow(flow, size_type, sizes, interp_mode='bilinear', align_corners=False):
|
152 |
+
"""Resize a flow according to ratio or shape.
|
153 |
+
|
154 |
+
Args:
|
155 |
+
flow (Tensor): Precomputed flow. shape [N, 2, H, W].
|
156 |
+
size_type (str): 'ratio' or 'shape'.
|
157 |
+
sizes (list[int | float]): the ratio for resizing or the final output
|
158 |
+
shape.
|
159 |
+
1) The order of ratio should be [ratio_h, ratio_w]. For
|
160 |
+
downsampling, the ratio should be smaller than 1.0 (i.e., ratio
|
161 |
+
< 1.0). For upsampling, the ratio should be larger than 1.0 (i.e.,
|
162 |
+
ratio > 1.0).
|
163 |
+
2) The order of output_size should be [out_h, out_w].
|
164 |
+
interp_mode (str): The mode of interpolation for resizing.
|
165 |
+
Default: 'bilinear'.
|
166 |
+
align_corners (bool): Whether align corners. Default: False.
|
167 |
+
|
168 |
+
Returns:
|
169 |
+
Tensor: Resized flow.
|
170 |
+
"""
|
171 |
+
_, _, flow_h, flow_w = flow.size()
|
172 |
+
if size_type == 'ratio':
|
173 |
+
output_h, output_w = int(flow_h * sizes[0]), int(flow_w * sizes[1])
|
174 |
+
elif size_type == 'shape':
|
175 |
+
output_h, output_w = sizes[0], sizes[1]
|
176 |
+
else:
|
177 |
+
raise ValueError(f'Size type should be ratio or shape, but got type {size_type}.')
|
178 |
+
|
179 |
+
input_flow = flow.clone()
|
180 |
+
ratio_h = output_h / flow_h
|
181 |
+
ratio_w = output_w / flow_w
|
182 |
+
input_flow[:, 0, :, :] *= ratio_w
|
183 |
+
input_flow[:, 1, :, :] *= ratio_h
|
184 |
+
resized_flow = F.interpolate(
|
185 |
+
input=input_flow, size=(output_h, output_w), mode=interp_mode, align_corners=align_corners)
|
186 |
+
return resized_flow
|
187 |
+
|
188 |
+
|
189 |
+
# TODO: may write a cpp file
|
190 |
+
def pixel_unshuffle(x, scale):
|
191 |
+
""" Pixel unshuffle.
|
192 |
+
|
193 |
+
Args:
|
194 |
+
x (Tensor): Input feature with shape (b, c, hh, hw).
|
195 |
+
scale (int): Downsample ratio.
|
196 |
+
|
197 |
+
Returns:
|
198 |
+
Tensor: the pixel unshuffled feature.
|
199 |
+
"""
|
200 |
+
b, c, hh, hw = x.size()
|
201 |
+
out_channel = c * (scale**2)
|
202 |
+
assert hh % scale == 0 and hw % scale == 0
|
203 |
+
h = hh // scale
|
204 |
+
w = hw // scale
|
205 |
+
x_view = x.view(b, c, h, scale, w, scale)
|
206 |
+
return x_view.permute(0, 1, 3, 5, 2, 4).reshape(b, out_channel, h, w)
|
207 |
+
|
208 |
+
|
209 |
+
class DCNv2Pack(ModulatedDeformConvPack):
|
210 |
+
"""Modulated deformable conv for deformable alignment.
|
211 |
+
|
212 |
+
Different from the official DCNv2Pack, which generates offsets and masks
|
213 |
+
from the preceding features, this DCNv2Pack takes another different
|
214 |
+
features to generate offsets and masks.
|
215 |
+
|
216 |
+
Ref:
|
217 |
+
Delving Deep into Deformable Alignment in Video Super-Resolution.
|
218 |
+
"""
|
219 |
+
|
220 |
+
def forward(self, x, feat):
|
221 |
+
out = self.conv_offset(feat)
|
222 |
+
o1, o2, mask = torch.chunk(out, 3, dim=1)
|
223 |
+
offset = torch.cat((o1, o2), dim=1)
|
224 |
+
mask = torch.sigmoid(mask)
|
225 |
+
|
226 |
+
offset_absmean = torch.mean(torch.abs(offset))
|
227 |
+
if offset_absmean > 50:
|
228 |
+
logger = get_root_logger()
|
229 |
+
logger.warning(f'Offset abs mean is {offset_absmean}, larger than 50.')
|
230 |
+
|
231 |
+
if LooseVersion(torchvision.__version__) >= LooseVersion('0.9.0'):
|
232 |
+
return torchvision.ops.deform_conv2d(x, offset, self.weight, self.bias, self.stride, self.padding,
|
233 |
+
self.dilation, mask)
|
234 |
+
else:
|
235 |
+
return modulated_deform_conv(x, offset, mask, self.weight, self.bias, self.stride, self.padding,
|
236 |
+
self.dilation, self.groups, self.deformable_groups)
|
237 |
+
|
238 |
+
|
239 |
+
def _no_grad_trunc_normal_(tensor, mean, std, a, b):
|
240 |
+
# From: https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/layers/weight_init.py
|
241 |
+
# Cut & paste from PyTorch official master until it's in a few official releases - RW
|
242 |
+
# Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf
|
243 |
+
def norm_cdf(x):
|
244 |
+
# Computes standard normal cumulative distribution function
|
245 |
+
return (1. + math.erf(x / math.sqrt(2.))) / 2.
|
246 |
+
|
247 |
+
if (mean < a - 2 * std) or (mean > b + 2 * std):
|
248 |
+
warnings.warn(
|
249 |
+
'mean is more than 2 std from [a, b] in nn.init.trunc_normal_. '
|
250 |
+
'The distribution of values may be incorrect.',
|
251 |
+
stacklevel=2)
|
252 |
+
|
253 |
+
with torch.no_grad():
|
254 |
+
# Values are generated by using a truncated uniform distribution and
|
255 |
+
# then using the inverse CDF for the normal distribution.
|
256 |
+
# Get upper and lower cdf values
|
257 |
+
low = norm_cdf((a - mean) / std)
|
258 |
+
up = norm_cdf((b - mean) / std)
|
259 |
+
|
260 |
+
# Uniformly fill tensor with values from [low, up], then translate to
|
261 |
+
# [2l-1, 2u-1].
|
262 |
+
tensor.uniform_(2 * low - 1, 2 * up - 1)
|
263 |
+
|
264 |
+
# Use inverse cdf transform for normal distribution to get truncated
|
265 |
+
# standard normal
|
266 |
+
tensor.erfinv_()
|
267 |
+
|
268 |
+
# Transform to proper mean, std
|
269 |
+
tensor.mul_(std * math.sqrt(2.))
|
270 |
+
tensor.add_(mean)
|
271 |
+
|
272 |
+
# Clamp to ensure it's in the proper range
|
273 |
+
tensor.clamp_(min=a, max=b)
|
274 |
+
return tensor
|
275 |
+
|
276 |
+
|
277 |
+
def trunc_normal_(tensor, mean=0., std=1., a=-2., b=2.):
|
278 |
+
r"""Fills the input Tensor with values drawn from a truncated
|
279 |
+
normal distribution.
|
280 |
+
|
281 |
+
From: https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/layers/weight_init.py
|
282 |
+
|
283 |
+
The values are effectively drawn from the
|
284 |
+
normal distribution :math:`\mathcal{N}(\text{mean}, \text{std}^2)`
|
285 |
+
with values outside :math:`[a, b]` redrawn until they are within
|
286 |
+
the bounds. The method used for generating the random values works
|
287 |
+
best when :math:`a \leq \text{mean} \leq b`.
|
288 |
+
|
289 |
+
Args:
|
290 |
+
tensor: an n-dimensional `torch.Tensor`
|
291 |
+
mean: the mean of the normal distribution
|
292 |
+
std: the standard deviation of the normal distribution
|
293 |
+
a: the minimum cutoff value
|
294 |
+
b: the maximum cutoff value
|
295 |
+
|
296 |
+
Examples:
|
297 |
+
>>> w = torch.empty(3, 5)
|
298 |
+
>>> nn.init.trunc_normal_(w)
|
299 |
+
"""
|
300 |
+
return _no_grad_trunc_normal_(tensor, mean, std, a, b)
|
301 |
+
|
302 |
+
|
303 |
+
# From PyTorch
|
304 |
+
def _ntuple(n):
|
305 |
+
|
306 |
+
def parse(x):
|
307 |
+
if isinstance(x, collections.abc.Iterable):
|
308 |
+
return x
|
309 |
+
return tuple(repeat(x, n))
|
310 |
+
|
311 |
+
return parse
|
312 |
+
|
313 |
+
|
314 |
+
to_1tuple = _ntuple(1)
|
315 |
+
to_2tuple = _ntuple(2)
|
316 |
+
to_3tuple = _ntuple(3)
|
317 |
+
to_4tuple = _ntuple(4)
|
318 |
+
to_ntuple = _ntuple
|
post_process/inswapper/CodeFormer/CodeFormer/basicsr/archs/codeformer_arch.py
ADDED
@@ -0,0 +1,276 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import numpy as np
|
3 |
+
import torch
|
4 |
+
from torch import nn, Tensor
|
5 |
+
import torch.nn.functional as F
|
6 |
+
from typing import Optional, List
|
7 |
+
|
8 |
+
from basicsr.archs.vqgan_arch import *
|
9 |
+
from basicsr.utils import get_root_logger
|
10 |
+
from basicsr.utils.registry import ARCH_REGISTRY
|
11 |
+
|
12 |
+
def calc_mean_std(feat, eps=1e-5):
|
13 |
+
"""Calculate mean and std for adaptive_instance_normalization.
|
14 |
+
|
15 |
+
Args:
|
16 |
+
feat (Tensor): 4D tensor.
|
17 |
+
eps (float): A small value added to the variance to avoid
|
18 |
+
divide-by-zero. Default: 1e-5.
|
19 |
+
"""
|
20 |
+
size = feat.size()
|
21 |
+
assert len(size) == 4, 'The input feature should be 4D tensor.'
|
22 |
+
b, c = size[:2]
|
23 |
+
feat_var = feat.view(b, c, -1).var(dim=2) + eps
|
24 |
+
feat_std = feat_var.sqrt().view(b, c, 1, 1)
|
25 |
+
feat_mean = feat.view(b, c, -1).mean(dim=2).view(b, c, 1, 1)
|
26 |
+
return feat_mean, feat_std
|
27 |
+
|
28 |
+
|
29 |
+
def adaptive_instance_normalization(content_feat, style_feat):
|
30 |
+
"""Adaptive instance normalization.
|
31 |
+
|
32 |
+
Adjust the reference features to have the similar color and illuminations
|
33 |
+
as those in the degradate features.
|
34 |
+
|
35 |
+
Args:
|
36 |
+
content_feat (Tensor): The reference feature.
|
37 |
+
style_feat (Tensor): The degradate features.
|
38 |
+
"""
|
39 |
+
size = content_feat.size()
|
40 |
+
style_mean, style_std = calc_mean_std(style_feat)
|
41 |
+
content_mean, content_std = calc_mean_std(content_feat)
|
42 |
+
normalized_feat = (content_feat - content_mean.expand(size)) / content_std.expand(size)
|
43 |
+
return normalized_feat * style_std.expand(size) + style_mean.expand(size)
|
44 |
+
|
45 |
+
|
46 |
+
class PositionEmbeddingSine(nn.Module):
|
47 |
+
"""
|
48 |
+
This is a more standard version of the position embedding, very similar to the one
|
49 |
+
used by the Attention is all you need paper, generalized to work on images.
|
50 |
+
"""
|
51 |
+
|
52 |
+
def __init__(self, num_pos_feats=64, temperature=10000, normalize=False, scale=None):
|
53 |
+
super().__init__()
|
54 |
+
self.num_pos_feats = num_pos_feats
|
55 |
+
self.temperature = temperature
|
56 |
+
self.normalize = normalize
|
57 |
+
if scale is not None and normalize is False:
|
58 |
+
raise ValueError("normalize should be True if scale is passed")
|
59 |
+
if scale is None:
|
60 |
+
scale = 2 * math.pi
|
61 |
+
self.scale = scale
|
62 |
+
|
63 |
+
def forward(self, x, mask=None):
|
64 |
+
if mask is None:
|
65 |
+
mask = torch.zeros((x.size(0), x.size(2), x.size(3)), device=x.device, dtype=torch.bool)
|
66 |
+
not_mask = ~mask
|
67 |
+
y_embed = not_mask.cumsum(1, dtype=torch.float32)
|
68 |
+
x_embed = not_mask.cumsum(2, dtype=torch.float32)
|
69 |
+
if self.normalize:
|
70 |
+
eps = 1e-6
|
71 |
+
y_embed = y_embed / (y_embed[:, -1:, :] + eps) * self.scale
|
72 |
+
x_embed = x_embed / (x_embed[:, :, -1:] + eps) * self.scale
|
73 |
+
|
74 |
+
dim_t = torch.arange(self.num_pos_feats, dtype=torch.float32, device=x.device)
|
75 |
+
dim_t = self.temperature ** (2 * (dim_t // 2) / self.num_pos_feats)
|
76 |
+
|
77 |
+
pos_x = x_embed[:, :, :, None] / dim_t
|
78 |
+
pos_y = y_embed[:, :, :, None] / dim_t
|
79 |
+
pos_x = torch.stack(
|
80 |
+
(pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()), dim=4
|
81 |
+
).flatten(3)
|
82 |
+
pos_y = torch.stack(
|
83 |
+
(pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()), dim=4
|
84 |
+
).flatten(3)
|
85 |
+
pos = torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2)
|
86 |
+
return pos
|
87 |
+
|
88 |
+
def _get_activation_fn(activation):
|
89 |
+
"""Return an activation function given a string"""
|
90 |
+
if activation == "relu":
|
91 |
+
return F.relu
|
92 |
+
if activation == "gelu":
|
93 |
+
return F.gelu
|
94 |
+
if activation == "glu":
|
95 |
+
return F.glu
|
96 |
+
raise RuntimeError(F"activation should be relu/gelu, not {activation}.")
|
97 |
+
|
98 |
+
|
99 |
+
class TransformerSALayer(nn.Module):
|
100 |
+
def __init__(self, embed_dim, nhead=8, dim_mlp=2048, dropout=0.0, activation="gelu"):
|
101 |
+
super().__init__()
|
102 |
+
self.self_attn = nn.MultiheadAttention(embed_dim, nhead, dropout=dropout)
|
103 |
+
# Implementation of Feedforward model - MLP
|
104 |
+
self.linear1 = nn.Linear(embed_dim, dim_mlp)
|
105 |
+
self.dropout = nn.Dropout(dropout)
|
106 |
+
self.linear2 = nn.Linear(dim_mlp, embed_dim)
|
107 |
+
|
108 |
+
self.norm1 = nn.LayerNorm(embed_dim)
|
109 |
+
self.norm2 = nn.LayerNorm(embed_dim)
|
110 |
+
self.dropout1 = nn.Dropout(dropout)
|
111 |
+
self.dropout2 = nn.Dropout(dropout)
|
112 |
+
|
113 |
+
self.activation = _get_activation_fn(activation)
|
114 |
+
|
115 |
+
def with_pos_embed(self, tensor, pos: Optional[Tensor]):
|
116 |
+
return tensor if pos is None else tensor + pos
|
117 |
+
|
118 |
+
def forward(self, tgt,
|
119 |
+
tgt_mask: Optional[Tensor] = None,
|
120 |
+
tgt_key_padding_mask: Optional[Tensor] = None,
|
121 |
+
query_pos: Optional[Tensor] = None):
|
122 |
+
|
123 |
+
# self attention
|
124 |
+
tgt2 = self.norm1(tgt)
|
125 |
+
q = k = self.with_pos_embed(tgt2, query_pos)
|
126 |
+
tgt2 = self.self_attn(q, k, value=tgt2, attn_mask=tgt_mask,
|
127 |
+
key_padding_mask=tgt_key_padding_mask)[0]
|
128 |
+
tgt = tgt + self.dropout1(tgt2)
|
129 |
+
|
130 |
+
# ffn
|
131 |
+
tgt2 = self.norm2(tgt)
|
132 |
+
tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt2))))
|
133 |
+
tgt = tgt + self.dropout2(tgt2)
|
134 |
+
return tgt
|
135 |
+
|
136 |
+
class Fuse_sft_block(nn.Module):
|
137 |
+
def __init__(self, in_ch, out_ch):
|
138 |
+
super().__init__()
|
139 |
+
self.encode_enc = ResBlock(2*in_ch, out_ch)
|
140 |
+
|
141 |
+
self.scale = nn.Sequential(
|
142 |
+
nn.Conv2d(in_ch, out_ch, kernel_size=3, padding=1),
|
143 |
+
nn.LeakyReLU(0.2, True),
|
144 |
+
nn.Conv2d(out_ch, out_ch, kernel_size=3, padding=1))
|
145 |
+
|
146 |
+
self.shift = nn.Sequential(
|
147 |
+
nn.Conv2d(in_ch, out_ch, kernel_size=3, padding=1),
|
148 |
+
nn.LeakyReLU(0.2, True),
|
149 |
+
nn.Conv2d(out_ch, out_ch, kernel_size=3, padding=1))
|
150 |
+
|
151 |
+
def forward(self, enc_feat, dec_feat, w=1):
|
152 |
+
enc_feat = self.encode_enc(torch.cat([enc_feat, dec_feat], dim=1))
|
153 |
+
scale = self.scale(enc_feat)
|
154 |
+
shift = self.shift(enc_feat)
|
155 |
+
residual = w * (dec_feat * scale + shift)
|
156 |
+
out = dec_feat + residual
|
157 |
+
return out
|
158 |
+
|
159 |
+
|
160 |
+
@ARCH_REGISTRY.register()
|
161 |
+
class CodeFormer(VQAutoEncoder):
|
162 |
+
def __init__(self, dim_embd=512, n_head=8, n_layers=9,
|
163 |
+
codebook_size=1024, latent_size=256,
|
164 |
+
connect_list=['32', '64', '128', '256'],
|
165 |
+
fix_modules=['quantize','generator']):
|
166 |
+
super(CodeFormer, self).__init__(512, 64, [1, 2, 2, 4, 4, 8], 'nearest',2, [16], codebook_size)
|
167 |
+
|
168 |
+
if fix_modules is not None:
|
169 |
+
for module in fix_modules:
|
170 |
+
for param in getattr(self, module).parameters():
|
171 |
+
param.requires_grad = False
|
172 |
+
|
173 |
+
self.connect_list = connect_list
|
174 |
+
self.n_layers = n_layers
|
175 |
+
self.dim_embd = dim_embd
|
176 |
+
self.dim_mlp = dim_embd*2
|
177 |
+
|
178 |
+
self.position_emb = nn.Parameter(torch.zeros(latent_size, self.dim_embd))
|
179 |
+
self.feat_emb = nn.Linear(256, self.dim_embd)
|
180 |
+
|
181 |
+
# transformer
|
182 |
+
self.ft_layers = nn.Sequential(*[TransformerSALayer(embed_dim=dim_embd, nhead=n_head, dim_mlp=self.dim_mlp, dropout=0.0)
|
183 |
+
for _ in range(self.n_layers)])
|
184 |
+
|
185 |
+
# logits_predict head
|
186 |
+
self.idx_pred_layer = nn.Sequential(
|
187 |
+
nn.LayerNorm(dim_embd),
|
188 |
+
nn.Linear(dim_embd, codebook_size, bias=False))
|
189 |
+
|
190 |
+
self.channels = {
|
191 |
+
'16': 512,
|
192 |
+
'32': 256,
|
193 |
+
'64': 256,
|
194 |
+
'128': 128,
|
195 |
+
'256': 128,
|
196 |
+
'512': 64,
|
197 |
+
}
|
198 |
+
|
199 |
+
# after second residual block for > 16, before attn layer for ==16
|
200 |
+
self.fuse_encoder_block = {'512':2, '256':5, '128':8, '64':11, '32':14, '16':18}
|
201 |
+
# after first residual block for > 16, before attn layer for ==16
|
202 |
+
self.fuse_generator_block = {'16':6, '32': 9, '64':12, '128':15, '256':18, '512':21}
|
203 |
+
|
204 |
+
# fuse_convs_dict
|
205 |
+
self.fuse_convs_dict = nn.ModuleDict()
|
206 |
+
for f_size in self.connect_list:
|
207 |
+
in_ch = self.channels[f_size]
|
208 |
+
self.fuse_convs_dict[f_size] = Fuse_sft_block(in_ch, in_ch)
|
209 |
+
|
210 |
+
def _init_weights(self, module):
|
211 |
+
if isinstance(module, (nn.Linear, nn.Embedding)):
|
212 |
+
module.weight.data.normal_(mean=0.0, std=0.02)
|
213 |
+
if isinstance(module, nn.Linear) and module.bias is not None:
|
214 |
+
module.bias.data.zero_()
|
215 |
+
elif isinstance(module, nn.LayerNorm):
|
216 |
+
module.bias.data.zero_()
|
217 |
+
module.weight.data.fill_(1.0)
|
218 |
+
|
219 |
+
def forward(self, x, w=0, detach_16=True, code_only=False, adain=False):
|
220 |
+
# ################### Encoder #####################
|
221 |
+
enc_feat_dict = {}
|
222 |
+
out_list = [self.fuse_encoder_block[f_size] for f_size in self.connect_list]
|
223 |
+
for i, block in enumerate(self.encoder.blocks):
|
224 |
+
x = block(x)
|
225 |
+
if i in out_list:
|
226 |
+
enc_feat_dict[str(x.shape[-1])] = x.clone()
|
227 |
+
|
228 |
+
lq_feat = x
|
229 |
+
# ################# Transformer ###################
|
230 |
+
# quant_feat, codebook_loss, quant_stats = self.quantize(lq_feat)
|
231 |
+
pos_emb = self.position_emb.unsqueeze(1).repeat(1,x.shape[0],1)
|
232 |
+
# BCHW -> BC(HW) -> (HW)BC
|
233 |
+
feat_emb = self.feat_emb(lq_feat.flatten(2).permute(2,0,1))
|
234 |
+
query_emb = feat_emb
|
235 |
+
# Transformer encoder
|
236 |
+
for layer in self.ft_layers:
|
237 |
+
query_emb = layer(query_emb, query_pos=pos_emb)
|
238 |
+
|
239 |
+
# output logits
|
240 |
+
logits = self.idx_pred_layer(query_emb) # (hw)bn
|
241 |
+
logits = logits.permute(1,0,2) # (hw)bn -> b(hw)n
|
242 |
+
|
243 |
+
if code_only: # for training stage II
|
244 |
+
# logits doesn't need softmax before cross_entropy loss
|
245 |
+
return logits, lq_feat
|
246 |
+
|
247 |
+
# ################# Quantization ###################
|
248 |
+
# if self.training:
|
249 |
+
# quant_feat = torch.einsum('btn,nc->btc', [soft_one_hot, self.quantize.embedding.weight])
|
250 |
+
# # b(hw)c -> bc(hw) -> bchw
|
251 |
+
# quant_feat = quant_feat.permute(0,2,1).view(lq_feat.shape)
|
252 |
+
# ------------
|
253 |
+
soft_one_hot = F.softmax(logits, dim=2)
|
254 |
+
_, top_idx = torch.topk(soft_one_hot, 1, dim=2)
|
255 |
+
quant_feat = self.quantize.get_codebook_feat(top_idx, shape=[x.shape[0],16,16,256])
|
256 |
+
# preserve gradients
|
257 |
+
# quant_feat = lq_feat + (quant_feat - lq_feat).detach()
|
258 |
+
|
259 |
+
if detach_16:
|
260 |
+
quant_feat = quant_feat.detach() # for training stage III
|
261 |
+
if adain:
|
262 |
+
quant_feat = adaptive_instance_normalization(quant_feat, lq_feat)
|
263 |
+
|
264 |
+
# ################## Generator ####################
|
265 |
+
x = quant_feat
|
266 |
+
fuse_list = [self.fuse_generator_block[f_size] for f_size in self.connect_list]
|
267 |
+
|
268 |
+
for i, block in enumerate(self.generator.blocks):
|
269 |
+
x = block(x)
|
270 |
+
if i in fuse_list: # fuse after i-th block
|
271 |
+
f_size = str(x.shape[-1])
|
272 |
+
if w>0:
|
273 |
+
x = self.fuse_convs_dict[f_size](enc_feat_dict[f_size].detach(), x, w)
|
274 |
+
out = x
|
275 |
+
# logits doesn't need softmax before cross_entropy loss
|
276 |
+
return out, logits, lq_feat
|
post_process/inswapper/CodeFormer/CodeFormer/basicsr/archs/rrdbnet_arch.py
ADDED
@@ -0,0 +1,119 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torch import nn as nn
|
3 |
+
from torch.nn import functional as F
|
4 |
+
|
5 |
+
from basicsr.utils.registry import ARCH_REGISTRY
|
6 |
+
from .arch_util import default_init_weights, make_layer, pixel_unshuffle
|
7 |
+
|
8 |
+
|
9 |
+
class ResidualDenseBlock(nn.Module):
|
10 |
+
"""Residual Dense Block.
|
11 |
+
|
12 |
+
Used in RRDB block in ESRGAN.
|
13 |
+
|
14 |
+
Args:
|
15 |
+
num_feat (int): Channel number of intermediate features.
|
16 |
+
num_grow_ch (int): Channels for each growth.
|
17 |
+
"""
|
18 |
+
|
19 |
+
def __init__(self, num_feat=64, num_grow_ch=32):
|
20 |
+
super(ResidualDenseBlock, self).__init__()
|
21 |
+
self.conv1 = nn.Conv2d(num_feat, num_grow_ch, 3, 1, 1)
|
22 |
+
self.conv2 = nn.Conv2d(num_feat + num_grow_ch, num_grow_ch, 3, 1, 1)
|
23 |
+
self.conv3 = nn.Conv2d(num_feat + 2 * num_grow_ch, num_grow_ch, 3, 1, 1)
|
24 |
+
self.conv4 = nn.Conv2d(num_feat + 3 * num_grow_ch, num_grow_ch, 3, 1, 1)
|
25 |
+
self.conv5 = nn.Conv2d(num_feat + 4 * num_grow_ch, num_feat, 3, 1, 1)
|
26 |
+
|
27 |
+
self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True)
|
28 |
+
|
29 |
+
# initialization
|
30 |
+
default_init_weights([self.conv1, self.conv2, self.conv3, self.conv4, self.conv5], 0.1)
|
31 |
+
|
32 |
+
def forward(self, x):
|
33 |
+
x1 = self.lrelu(self.conv1(x))
|
34 |
+
x2 = self.lrelu(self.conv2(torch.cat((x, x1), 1)))
|
35 |
+
x3 = self.lrelu(self.conv3(torch.cat((x, x1, x2), 1)))
|
36 |
+
x4 = self.lrelu(self.conv4(torch.cat((x, x1, x2, x3), 1)))
|
37 |
+
x5 = self.conv5(torch.cat((x, x1, x2, x3, x4), 1))
|
38 |
+
# Emperically, we use 0.2 to scale the residual for better performance
|
39 |
+
return x5 * 0.2 + x
|
40 |
+
|
41 |
+
|
42 |
+
class RRDB(nn.Module):
|
43 |
+
"""Residual in Residual Dense Block.
|
44 |
+
|
45 |
+
Used in RRDB-Net in ESRGAN.
|
46 |
+
|
47 |
+
Args:
|
48 |
+
num_feat (int): Channel number of intermediate features.
|
49 |
+
num_grow_ch (int): Channels for each growth.
|
50 |
+
"""
|
51 |
+
|
52 |
+
def __init__(self, num_feat, num_grow_ch=32):
|
53 |
+
super(RRDB, self).__init__()
|
54 |
+
self.rdb1 = ResidualDenseBlock(num_feat, num_grow_ch)
|
55 |
+
self.rdb2 = ResidualDenseBlock(num_feat, num_grow_ch)
|
56 |
+
self.rdb3 = ResidualDenseBlock(num_feat, num_grow_ch)
|
57 |
+
|
58 |
+
def forward(self, x):
|
59 |
+
out = self.rdb1(x)
|
60 |
+
out = self.rdb2(out)
|
61 |
+
out = self.rdb3(out)
|
62 |
+
# Emperically, we use 0.2 to scale the residual for better performance
|
63 |
+
return out * 0.2 + x
|
64 |
+
|
65 |
+
|
66 |
+
@ARCH_REGISTRY.register()
|
67 |
+
class RRDBNet(nn.Module):
|
68 |
+
"""Networks consisting of Residual in Residual Dense Block, which is used
|
69 |
+
in ESRGAN.
|
70 |
+
|
71 |
+
ESRGAN: Enhanced Super-Resolution Generative Adversarial Networks.
|
72 |
+
|
73 |
+
We extend ESRGAN for scale x2 and scale x1.
|
74 |
+
Note: This is one option for scale 1, scale 2 in RRDBNet.
|
75 |
+
We first employ the pixel-unshuffle (an inverse operation of pixelshuffle to reduce the spatial size
|
76 |
+
and enlarge the channel size before feeding inputs into the main ESRGAN architecture.
|
77 |
+
|
78 |
+
Args:
|
79 |
+
num_in_ch (int): Channel number of inputs.
|
80 |
+
num_out_ch (int): Channel number of outputs.
|
81 |
+
num_feat (int): Channel number of intermediate features.
|
82 |
+
Default: 64
|
83 |
+
num_block (int): Block number in the trunk network. Defaults: 23
|
84 |
+
num_grow_ch (int): Channels for each growth. Default: 32.
|
85 |
+
"""
|
86 |
+
|
87 |
+
def __init__(self, num_in_ch, num_out_ch, scale=4, num_feat=64, num_block=23, num_grow_ch=32):
|
88 |
+
super(RRDBNet, self).__init__()
|
89 |
+
self.scale = scale
|
90 |
+
if scale == 2:
|
91 |
+
num_in_ch = num_in_ch * 4
|
92 |
+
elif scale == 1:
|
93 |
+
num_in_ch = num_in_ch * 16
|
94 |
+
self.conv_first = nn.Conv2d(num_in_ch, num_feat, 3, 1, 1)
|
95 |
+
self.body = make_layer(RRDB, num_block, num_feat=num_feat, num_grow_ch=num_grow_ch)
|
96 |
+
self.conv_body = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
|
97 |
+
# upsample
|
98 |
+
self.conv_up1 = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
|
99 |
+
self.conv_up2 = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
|
100 |
+
self.conv_hr = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
|
101 |
+
self.conv_last = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1)
|
102 |
+
|
103 |
+
self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True)
|
104 |
+
|
105 |
+
def forward(self, x):
|
106 |
+
if self.scale == 2:
|
107 |
+
feat = pixel_unshuffle(x, scale=2)
|
108 |
+
elif self.scale == 1:
|
109 |
+
feat = pixel_unshuffle(x, scale=4)
|
110 |
+
else:
|
111 |
+
feat = x
|
112 |
+
feat = self.conv_first(feat)
|
113 |
+
body_feat = self.conv_body(self.body(feat))
|
114 |
+
feat = feat + body_feat
|
115 |
+
# upsample
|
116 |
+
feat = self.lrelu(self.conv_up1(F.interpolate(feat, scale_factor=2, mode='nearest')))
|
117 |
+
feat = self.lrelu(self.conv_up2(F.interpolate(feat, scale_factor=2, mode='nearest')))
|
118 |
+
out = self.conv_last(self.lrelu(self.conv_hr(feat)))
|
119 |
+
return out
|
post_process/inswapper/CodeFormer/CodeFormer/basicsr/archs/vgg_arch.py
ADDED
@@ -0,0 +1,161 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import torch
|
3 |
+
from collections import OrderedDict
|
4 |
+
from torch import nn as nn
|
5 |
+
from torchvision.models import vgg as vgg
|
6 |
+
|
7 |
+
from basicsr.utils.registry import ARCH_REGISTRY
|
8 |
+
|
9 |
+
VGG_PRETRAIN_PATH = 'experiments/pretrained_models/vgg19-dcbb9e9d.pth'
|
10 |
+
NAMES = {
|
11 |
+
'vgg11': [
|
12 |
+
'conv1_1', 'relu1_1', 'pool1', 'conv2_1', 'relu2_1', 'pool2', 'conv3_1', 'relu3_1', 'conv3_2', 'relu3_2',
|
13 |
+
'pool3', 'conv4_1', 'relu4_1', 'conv4_2', 'relu4_2', 'pool4', 'conv5_1', 'relu5_1', 'conv5_2', 'relu5_2',
|
14 |
+
'pool5'
|
15 |
+
],
|
16 |
+
'vgg13': [
|
17 |
+
'conv1_1', 'relu1_1', 'conv1_2', 'relu1_2', 'pool1', 'conv2_1', 'relu2_1', 'conv2_2', 'relu2_2', 'pool2',
|
18 |
+
'conv3_1', 'relu3_1', 'conv3_2', 'relu3_2', 'pool3', 'conv4_1', 'relu4_1', 'conv4_2', 'relu4_2', 'pool4',
|
19 |
+
'conv5_1', 'relu5_1', 'conv5_2', 'relu5_2', 'pool5'
|
20 |
+
],
|
21 |
+
'vgg16': [
|
22 |
+
'conv1_1', 'relu1_1', 'conv1_2', 'relu1_2', 'pool1', 'conv2_1', 'relu2_1', 'conv2_2', 'relu2_2', 'pool2',
|
23 |
+
'conv3_1', 'relu3_1', 'conv3_2', 'relu3_2', 'conv3_3', 'relu3_3', 'pool3', 'conv4_1', 'relu4_1', 'conv4_2',
|
24 |
+
'relu4_2', 'conv4_3', 'relu4_3', 'pool4', 'conv5_1', 'relu5_1', 'conv5_2', 'relu5_2', 'conv5_3', 'relu5_3',
|
25 |
+
'pool5'
|
26 |
+
],
|
27 |
+
'vgg19': [
|
28 |
+
'conv1_1', 'relu1_1', 'conv1_2', 'relu1_2', 'pool1', 'conv2_1', 'relu2_1', 'conv2_2', 'relu2_2', 'pool2',
|
29 |
+
'conv3_1', 'relu3_1', 'conv3_2', 'relu3_2', 'conv3_3', 'relu3_3', 'conv3_4', 'relu3_4', 'pool3', 'conv4_1',
|
30 |
+
'relu4_1', 'conv4_2', 'relu4_2', 'conv4_3', 'relu4_3', 'conv4_4', 'relu4_4', 'pool4', 'conv5_1', 'relu5_1',
|
31 |
+
'conv5_2', 'relu5_2', 'conv5_3', 'relu5_3', 'conv5_4', 'relu5_4', 'pool5'
|
32 |
+
]
|
33 |
+
}
|
34 |
+
|
35 |
+
|
36 |
+
def insert_bn(names):
|
37 |
+
"""Insert bn layer after each conv.
|
38 |
+
|
39 |
+
Args:
|
40 |
+
names (list): The list of layer names.
|
41 |
+
|
42 |
+
Returns:
|
43 |
+
list: The list of layer names with bn layers.
|
44 |
+
"""
|
45 |
+
names_bn = []
|
46 |
+
for name in names:
|
47 |
+
names_bn.append(name)
|
48 |
+
if 'conv' in name:
|
49 |
+
position = name.replace('conv', '')
|
50 |
+
names_bn.append('bn' + position)
|
51 |
+
return names_bn
|
52 |
+
|
53 |
+
|
54 |
+
@ARCH_REGISTRY.register()
|
55 |
+
class VGGFeatureExtractor(nn.Module):
|
56 |
+
"""VGG network for feature extraction.
|
57 |
+
|
58 |
+
In this implementation, we allow users to choose whether use normalization
|
59 |
+
in the input feature and the type of vgg network. Note that the pretrained
|
60 |
+
path must fit the vgg type.
|
61 |
+
|
62 |
+
Args:
|
63 |
+
layer_name_list (list[str]): Forward function returns the corresponding
|
64 |
+
features according to the layer_name_list.
|
65 |
+
Example: {'relu1_1', 'relu2_1', 'relu3_1'}.
|
66 |
+
vgg_type (str): Set the type of vgg network. Default: 'vgg19'.
|
67 |
+
use_input_norm (bool): If True, normalize the input image. Importantly,
|
68 |
+
the input feature must in the range [0, 1]. Default: True.
|
69 |
+
range_norm (bool): If True, norm images with range [-1, 1] to [0, 1].
|
70 |
+
Default: False.
|
71 |
+
requires_grad (bool): If true, the parameters of VGG network will be
|
72 |
+
optimized. Default: False.
|
73 |
+
remove_pooling (bool): If true, the max pooling operations in VGG net
|
74 |
+
will be removed. Default: False.
|
75 |
+
pooling_stride (int): The stride of max pooling operation. Default: 2.
|
76 |
+
"""
|
77 |
+
|
78 |
+
def __init__(self,
|
79 |
+
layer_name_list,
|
80 |
+
vgg_type='vgg19',
|
81 |
+
use_input_norm=True,
|
82 |
+
range_norm=False,
|
83 |
+
requires_grad=False,
|
84 |
+
remove_pooling=False,
|
85 |
+
pooling_stride=2):
|
86 |
+
super(VGGFeatureExtractor, self).__init__()
|
87 |
+
|
88 |
+
self.layer_name_list = layer_name_list
|
89 |
+
self.use_input_norm = use_input_norm
|
90 |
+
self.range_norm = range_norm
|
91 |
+
|
92 |
+
self.names = NAMES[vgg_type.replace('_bn', '')]
|
93 |
+
if 'bn' in vgg_type:
|
94 |
+
self.names = insert_bn(self.names)
|
95 |
+
|
96 |
+
# only borrow layers that will be used to avoid unused params
|
97 |
+
max_idx = 0
|
98 |
+
for v in layer_name_list:
|
99 |
+
idx = self.names.index(v)
|
100 |
+
if idx > max_idx:
|
101 |
+
max_idx = idx
|
102 |
+
|
103 |
+
if os.path.exists(VGG_PRETRAIN_PATH):
|
104 |
+
vgg_net = getattr(vgg, vgg_type)(pretrained=False)
|
105 |
+
state_dict = torch.load(VGG_PRETRAIN_PATH, map_location=lambda storage, loc: storage)
|
106 |
+
vgg_net.load_state_dict(state_dict)
|
107 |
+
else:
|
108 |
+
vgg_net = getattr(vgg, vgg_type)(pretrained=True)
|
109 |
+
|
110 |
+
features = vgg_net.features[:max_idx + 1]
|
111 |
+
|
112 |
+
modified_net = OrderedDict()
|
113 |
+
for k, v in zip(self.names, features):
|
114 |
+
if 'pool' in k:
|
115 |
+
# if remove_pooling is true, pooling operation will be removed
|
116 |
+
if remove_pooling:
|
117 |
+
continue
|
118 |
+
else:
|
119 |
+
# in some cases, we may want to change the default stride
|
120 |
+
modified_net[k] = nn.MaxPool2d(kernel_size=2, stride=pooling_stride)
|
121 |
+
else:
|
122 |
+
modified_net[k] = v
|
123 |
+
|
124 |
+
self.vgg_net = nn.Sequential(modified_net)
|
125 |
+
|
126 |
+
if not requires_grad:
|
127 |
+
self.vgg_net.eval()
|
128 |
+
for param in self.parameters():
|
129 |
+
param.requires_grad = False
|
130 |
+
else:
|
131 |
+
self.vgg_net.train()
|
132 |
+
for param in self.parameters():
|
133 |
+
param.requires_grad = True
|
134 |
+
|
135 |
+
if self.use_input_norm:
|
136 |
+
# the mean is for image with range [0, 1]
|
137 |
+
self.register_buffer('mean', torch.Tensor([0.485, 0.456, 0.406]).view(1, 3, 1, 1))
|
138 |
+
# the std is for image with range [0, 1]
|
139 |
+
self.register_buffer('std', torch.Tensor([0.229, 0.224, 0.225]).view(1, 3, 1, 1))
|
140 |
+
|
141 |
+
def forward(self, x):
|
142 |
+
"""Forward function.
|
143 |
+
|
144 |
+
Args:
|
145 |
+
x (Tensor): Input tensor with shape (n, c, h, w).
|
146 |
+
|
147 |
+
Returns:
|
148 |
+
Tensor: Forward results.
|
149 |
+
"""
|
150 |
+
if self.range_norm:
|
151 |
+
x = (x + 1) / 2
|
152 |
+
if self.use_input_norm:
|
153 |
+
x = (x - self.mean) / self.std
|
154 |
+
output = {}
|
155 |
+
|
156 |
+
for key, layer in self.vgg_net._modules.items():
|
157 |
+
x = layer(x)
|
158 |
+
if key in self.layer_name_list:
|
159 |
+
output[key] = x.clone()
|
160 |
+
|
161 |
+
return output
|
post_process/inswapper/CodeFormer/CodeFormer/basicsr/archs/vqgan_arch.py
ADDED
@@ -0,0 +1,435 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
'''
|
2 |
+
VQGAN code, adapted from the original created by the Unleashing Transformers authors:
|
3 |
+
https://github.com/samb-t/unleashing-transformers/blob/master/models/vqgan.py
|
4 |
+
|
5 |
+
'''
|
6 |
+
import numpy as np
|
7 |
+
import torch
|
8 |
+
import torch.nn as nn
|
9 |
+
import torch.nn.functional as F
|
10 |
+
import copy
|
11 |
+
from basicsr.utils import get_root_logger
|
12 |
+
from basicsr.utils.registry import ARCH_REGISTRY
|
13 |
+
|
14 |
+
def normalize(in_channels):
|
15 |
+
return torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)
|
16 |
+
|
17 |
+
|
18 |
+
@torch.jit.script
|
19 |
+
def swish(x):
|
20 |
+
return x*torch.sigmoid(x)
|
21 |
+
|
22 |
+
|
23 |
+
# Define VQVAE classes
|
24 |
+
class VectorQuantizer(nn.Module):
|
25 |
+
def __init__(self, codebook_size, emb_dim, beta):
|
26 |
+
super(VectorQuantizer, self).__init__()
|
27 |
+
self.codebook_size = codebook_size # number of embeddings
|
28 |
+
self.emb_dim = emb_dim # dimension of embedding
|
29 |
+
self.beta = beta # commitment cost used in loss term, beta * ||z_e(x)-sg[e]||^2
|
30 |
+
self.embedding = nn.Embedding(self.codebook_size, self.emb_dim)
|
31 |
+
self.embedding.weight.data.uniform_(-1.0 / self.codebook_size, 1.0 / self.codebook_size)
|
32 |
+
|
33 |
+
def forward(self, z):
|
34 |
+
# reshape z -> (batch, height, width, channel) and flatten
|
35 |
+
z = z.permute(0, 2, 3, 1).contiguous()
|
36 |
+
z_flattened = z.view(-1, self.emb_dim)
|
37 |
+
|
38 |
+
# distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z
|
39 |
+
d = (z_flattened ** 2).sum(dim=1, keepdim=True) + (self.embedding.weight**2).sum(1) - \
|
40 |
+
2 * torch.matmul(z_flattened, self.embedding.weight.t())
|
41 |
+
|
42 |
+
mean_distance = torch.mean(d)
|
43 |
+
# find closest encodings
|
44 |
+
# min_encoding_indices = torch.argmin(d, dim=1).unsqueeze(1)
|
45 |
+
min_encoding_scores, min_encoding_indices = torch.topk(d, 1, dim=1, largest=False)
|
46 |
+
# [0-1], higher score, higher confidence
|
47 |
+
min_encoding_scores = torch.exp(-min_encoding_scores/10)
|
48 |
+
|
49 |
+
min_encodings = torch.zeros(min_encoding_indices.shape[0], self.codebook_size).to(z)
|
50 |
+
min_encodings.scatter_(1, min_encoding_indices, 1)
|
51 |
+
|
52 |
+
# get quantized latent vectors
|
53 |
+
z_q = torch.matmul(min_encodings, self.embedding.weight).view(z.shape)
|
54 |
+
# compute loss for embedding
|
55 |
+
loss = torch.mean((z_q.detach()-z)**2) + self.beta * torch.mean((z_q - z.detach()) ** 2)
|
56 |
+
# preserve gradients
|
57 |
+
z_q = z + (z_q - z).detach()
|
58 |
+
|
59 |
+
# perplexity
|
60 |
+
e_mean = torch.mean(min_encodings, dim=0)
|
61 |
+
perplexity = torch.exp(-torch.sum(e_mean * torch.log(e_mean + 1e-10)))
|
62 |
+
# reshape back to match original input shape
|
63 |
+
z_q = z_q.permute(0, 3, 1, 2).contiguous()
|
64 |
+
|
65 |
+
return z_q, loss, {
|
66 |
+
"perplexity": perplexity,
|
67 |
+
"min_encodings": min_encodings,
|
68 |
+
"min_encoding_indices": min_encoding_indices,
|
69 |
+
"min_encoding_scores": min_encoding_scores,
|
70 |
+
"mean_distance": mean_distance
|
71 |
+
}
|
72 |
+
|
73 |
+
def get_codebook_feat(self, indices, shape):
|
74 |
+
# input indices: batch*token_num -> (batch*token_num)*1
|
75 |
+
# shape: batch, height, width, channel
|
76 |
+
indices = indices.view(-1,1)
|
77 |
+
min_encodings = torch.zeros(indices.shape[0], self.codebook_size).to(indices)
|
78 |
+
min_encodings.scatter_(1, indices, 1)
|
79 |
+
# get quantized latent vectors
|
80 |
+
z_q = torch.matmul(min_encodings.float(), self.embedding.weight)
|
81 |
+
|
82 |
+
if shape is not None: # reshape back to match original input shape
|
83 |
+
z_q = z_q.view(shape).permute(0, 3, 1, 2).contiguous()
|
84 |
+
|
85 |
+
return z_q
|
86 |
+
|
87 |
+
|
88 |
+
class GumbelQuantizer(nn.Module):
|
89 |
+
def __init__(self, codebook_size, emb_dim, num_hiddens, straight_through=False, kl_weight=5e-4, temp_init=1.0):
|
90 |
+
super().__init__()
|
91 |
+
self.codebook_size = codebook_size # number of embeddings
|
92 |
+
self.emb_dim = emb_dim # dimension of embedding
|
93 |
+
self.straight_through = straight_through
|
94 |
+
self.temperature = temp_init
|
95 |
+
self.kl_weight = kl_weight
|
96 |
+
self.proj = nn.Conv2d(num_hiddens, codebook_size, 1) # projects last encoder layer to quantized logits
|
97 |
+
self.embed = nn.Embedding(codebook_size, emb_dim)
|
98 |
+
|
99 |
+
def forward(self, z):
|
100 |
+
hard = self.straight_through if self.training else True
|
101 |
+
|
102 |
+
logits = self.proj(z)
|
103 |
+
|
104 |
+
soft_one_hot = F.gumbel_softmax(logits, tau=self.temperature, dim=1, hard=hard)
|
105 |
+
|
106 |
+
z_q = torch.einsum("b n h w, n d -> b d h w", soft_one_hot, self.embed.weight)
|
107 |
+
|
108 |
+
# + kl divergence to the prior loss
|
109 |
+
qy = F.softmax(logits, dim=1)
|
110 |
+
diff = self.kl_weight * torch.sum(qy * torch.log(qy * self.codebook_size + 1e-10), dim=1).mean()
|
111 |
+
min_encoding_indices = soft_one_hot.argmax(dim=1)
|
112 |
+
|
113 |
+
return z_q, diff, {
|
114 |
+
"min_encoding_indices": min_encoding_indices
|
115 |
+
}
|
116 |
+
|
117 |
+
|
118 |
+
class Downsample(nn.Module):
|
119 |
+
def __init__(self, in_channels):
|
120 |
+
super().__init__()
|
121 |
+
self.conv = torch.nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=2, padding=0)
|
122 |
+
|
123 |
+
def forward(self, x):
|
124 |
+
pad = (0, 1, 0, 1)
|
125 |
+
x = torch.nn.functional.pad(x, pad, mode="constant", value=0)
|
126 |
+
x = self.conv(x)
|
127 |
+
return x
|
128 |
+
|
129 |
+
|
130 |
+
class Upsample(nn.Module):
|
131 |
+
def __init__(self, in_channels):
|
132 |
+
super().__init__()
|
133 |
+
self.conv = nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=1, padding=1)
|
134 |
+
|
135 |
+
def forward(self, x):
|
136 |
+
x = F.interpolate(x, scale_factor=2.0, mode="nearest")
|
137 |
+
x = self.conv(x)
|
138 |
+
|
139 |
+
return x
|
140 |
+
|
141 |
+
|
142 |
+
class ResBlock(nn.Module):
|
143 |
+
def __init__(self, in_channels, out_channels=None):
|
144 |
+
super(ResBlock, self).__init__()
|
145 |
+
self.in_channels = in_channels
|
146 |
+
self.out_channels = in_channels if out_channels is None else out_channels
|
147 |
+
self.norm1 = normalize(in_channels)
|
148 |
+
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1)
|
149 |
+
self.norm2 = normalize(out_channels)
|
150 |
+
self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1)
|
151 |
+
if self.in_channels != self.out_channels:
|
152 |
+
self.conv_out = nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0)
|
153 |
+
|
154 |
+
def forward(self, x_in):
|
155 |
+
x = x_in
|
156 |
+
x = self.norm1(x)
|
157 |
+
x = swish(x)
|
158 |
+
x = self.conv1(x)
|
159 |
+
x = self.norm2(x)
|
160 |
+
x = swish(x)
|
161 |
+
x = self.conv2(x)
|
162 |
+
if self.in_channels != self.out_channels:
|
163 |
+
x_in = self.conv_out(x_in)
|
164 |
+
|
165 |
+
return x + x_in
|
166 |
+
|
167 |
+
|
168 |
+
class AttnBlock(nn.Module):
|
169 |
+
def __init__(self, in_channels):
|
170 |
+
super().__init__()
|
171 |
+
self.in_channels = in_channels
|
172 |
+
|
173 |
+
self.norm = normalize(in_channels)
|
174 |
+
self.q = torch.nn.Conv2d(
|
175 |
+
in_channels,
|
176 |
+
in_channels,
|
177 |
+
kernel_size=1,
|
178 |
+
stride=1,
|
179 |
+
padding=0
|
180 |
+
)
|
181 |
+
self.k = torch.nn.Conv2d(
|
182 |
+
in_channels,
|
183 |
+
in_channels,
|
184 |
+
kernel_size=1,
|
185 |
+
stride=1,
|
186 |
+
padding=0
|
187 |
+
)
|
188 |
+
self.v = torch.nn.Conv2d(
|
189 |
+
in_channels,
|
190 |
+
in_channels,
|
191 |
+
kernel_size=1,
|
192 |
+
stride=1,
|
193 |
+
padding=0
|
194 |
+
)
|
195 |
+
self.proj_out = torch.nn.Conv2d(
|
196 |
+
in_channels,
|
197 |
+
in_channels,
|
198 |
+
kernel_size=1,
|
199 |
+
stride=1,
|
200 |
+
padding=0
|
201 |
+
)
|
202 |
+
|
203 |
+
def forward(self, x):
|
204 |
+
h_ = x
|
205 |
+
h_ = self.norm(h_)
|
206 |
+
q = self.q(h_)
|
207 |
+
k = self.k(h_)
|
208 |
+
v = self.v(h_)
|
209 |
+
|
210 |
+
# compute attention
|
211 |
+
b, c, h, w = q.shape
|
212 |
+
q = q.reshape(b, c, h*w)
|
213 |
+
q = q.permute(0, 2, 1)
|
214 |
+
k = k.reshape(b, c, h*w)
|
215 |
+
w_ = torch.bmm(q, k)
|
216 |
+
w_ = w_ * (int(c)**(-0.5))
|
217 |
+
w_ = F.softmax(w_, dim=2)
|
218 |
+
|
219 |
+
# attend to values
|
220 |
+
v = v.reshape(b, c, h*w)
|
221 |
+
w_ = w_.permute(0, 2, 1)
|
222 |
+
h_ = torch.bmm(v, w_)
|
223 |
+
h_ = h_.reshape(b, c, h, w)
|
224 |
+
|
225 |
+
h_ = self.proj_out(h_)
|
226 |
+
|
227 |
+
return x+h_
|
228 |
+
|
229 |
+
|
230 |
+
class Encoder(nn.Module):
|
231 |
+
def __init__(self, in_channels, nf, emb_dim, ch_mult, num_res_blocks, resolution, attn_resolutions):
|
232 |
+
super().__init__()
|
233 |
+
self.nf = nf
|
234 |
+
self.num_resolutions = len(ch_mult)
|
235 |
+
self.num_res_blocks = num_res_blocks
|
236 |
+
self.resolution = resolution
|
237 |
+
self.attn_resolutions = attn_resolutions
|
238 |
+
|
239 |
+
curr_res = self.resolution
|
240 |
+
in_ch_mult = (1,)+tuple(ch_mult)
|
241 |
+
|
242 |
+
blocks = []
|
243 |
+
# initial convultion
|
244 |
+
blocks.append(nn.Conv2d(in_channels, nf, kernel_size=3, stride=1, padding=1))
|
245 |
+
|
246 |
+
# residual and downsampling blocks, with attention on smaller res (16x16)
|
247 |
+
for i in range(self.num_resolutions):
|
248 |
+
block_in_ch = nf * in_ch_mult[i]
|
249 |
+
block_out_ch = nf * ch_mult[i]
|
250 |
+
for _ in range(self.num_res_blocks):
|
251 |
+
blocks.append(ResBlock(block_in_ch, block_out_ch))
|
252 |
+
block_in_ch = block_out_ch
|
253 |
+
if curr_res in attn_resolutions:
|
254 |
+
blocks.append(AttnBlock(block_in_ch))
|
255 |
+
|
256 |
+
if i != self.num_resolutions - 1:
|
257 |
+
blocks.append(Downsample(block_in_ch))
|
258 |
+
curr_res = curr_res // 2
|
259 |
+
|
260 |
+
# non-local attention block
|
261 |
+
blocks.append(ResBlock(block_in_ch, block_in_ch))
|
262 |
+
blocks.append(AttnBlock(block_in_ch))
|
263 |
+
blocks.append(ResBlock(block_in_ch, block_in_ch))
|
264 |
+
|
265 |
+
# normalise and convert to latent size
|
266 |
+
blocks.append(normalize(block_in_ch))
|
267 |
+
blocks.append(nn.Conv2d(block_in_ch, emb_dim, kernel_size=3, stride=1, padding=1))
|
268 |
+
self.blocks = nn.ModuleList(blocks)
|
269 |
+
|
270 |
+
def forward(self, x):
|
271 |
+
for block in self.blocks:
|
272 |
+
x = block(x)
|
273 |
+
|
274 |
+
return x
|
275 |
+
|
276 |
+
|
277 |
+
class Generator(nn.Module):
|
278 |
+
def __init__(self, nf, emb_dim, ch_mult, res_blocks, img_size, attn_resolutions):
|
279 |
+
super().__init__()
|
280 |
+
self.nf = nf
|
281 |
+
self.ch_mult = ch_mult
|
282 |
+
self.num_resolutions = len(self.ch_mult)
|
283 |
+
self.num_res_blocks = res_blocks
|
284 |
+
self.resolution = img_size
|
285 |
+
self.attn_resolutions = attn_resolutions
|
286 |
+
self.in_channels = emb_dim
|
287 |
+
self.out_channels = 3
|
288 |
+
block_in_ch = self.nf * self.ch_mult[-1]
|
289 |
+
curr_res = self.resolution // 2 ** (self.num_resolutions-1)
|
290 |
+
|
291 |
+
blocks = []
|
292 |
+
# initial conv
|
293 |
+
blocks.append(nn.Conv2d(self.in_channels, block_in_ch, kernel_size=3, stride=1, padding=1))
|
294 |
+
|
295 |
+
# non-local attention block
|
296 |
+
blocks.append(ResBlock(block_in_ch, block_in_ch))
|
297 |
+
blocks.append(AttnBlock(block_in_ch))
|
298 |
+
blocks.append(ResBlock(block_in_ch, block_in_ch))
|
299 |
+
|
300 |
+
for i in reversed(range(self.num_resolutions)):
|
301 |
+
block_out_ch = self.nf * self.ch_mult[i]
|
302 |
+
|
303 |
+
for _ in range(self.num_res_blocks):
|
304 |
+
blocks.append(ResBlock(block_in_ch, block_out_ch))
|
305 |
+
block_in_ch = block_out_ch
|
306 |
+
|
307 |
+
if curr_res in self.attn_resolutions:
|
308 |
+
blocks.append(AttnBlock(block_in_ch))
|
309 |
+
|
310 |
+
if i != 0:
|
311 |
+
blocks.append(Upsample(block_in_ch))
|
312 |
+
curr_res = curr_res * 2
|
313 |
+
|
314 |
+
blocks.append(normalize(block_in_ch))
|
315 |
+
blocks.append(nn.Conv2d(block_in_ch, self.out_channels, kernel_size=3, stride=1, padding=1))
|
316 |
+
|
317 |
+
self.blocks = nn.ModuleList(blocks)
|
318 |
+
|
319 |
+
|
320 |
+
def forward(self, x):
|
321 |
+
for block in self.blocks:
|
322 |
+
x = block(x)
|
323 |
+
|
324 |
+
return x
|
325 |
+
|
326 |
+
|
327 |
+
@ARCH_REGISTRY.register()
|
328 |
+
class VQAutoEncoder(nn.Module):
|
329 |
+
def __init__(self, img_size, nf, ch_mult, quantizer="nearest", res_blocks=2, attn_resolutions=[16], codebook_size=1024, emb_dim=256,
|
330 |
+
beta=0.25, gumbel_straight_through=False, gumbel_kl_weight=1e-8, model_path=None):
|
331 |
+
super().__init__()
|
332 |
+
logger = get_root_logger()
|
333 |
+
self.in_channels = 3
|
334 |
+
self.nf = nf
|
335 |
+
self.n_blocks = res_blocks
|
336 |
+
self.codebook_size = codebook_size
|
337 |
+
self.embed_dim = emb_dim
|
338 |
+
self.ch_mult = ch_mult
|
339 |
+
self.resolution = img_size
|
340 |
+
self.attn_resolutions = attn_resolutions
|
341 |
+
self.quantizer_type = quantizer
|
342 |
+
self.encoder = Encoder(
|
343 |
+
self.in_channels,
|
344 |
+
self.nf,
|
345 |
+
self.embed_dim,
|
346 |
+
self.ch_mult,
|
347 |
+
self.n_blocks,
|
348 |
+
self.resolution,
|
349 |
+
self.attn_resolutions
|
350 |
+
)
|
351 |
+
if self.quantizer_type == "nearest":
|
352 |
+
self.beta = beta #0.25
|
353 |
+
self.quantize = VectorQuantizer(self.codebook_size, self.embed_dim, self.beta)
|
354 |
+
elif self.quantizer_type == "gumbel":
|
355 |
+
self.gumbel_num_hiddens = emb_dim
|
356 |
+
self.straight_through = gumbel_straight_through
|
357 |
+
self.kl_weight = gumbel_kl_weight
|
358 |
+
self.quantize = GumbelQuantizer(
|
359 |
+
self.codebook_size,
|
360 |
+
self.embed_dim,
|
361 |
+
self.gumbel_num_hiddens,
|
362 |
+
self.straight_through,
|
363 |
+
self.kl_weight
|
364 |
+
)
|
365 |
+
self.generator = Generator(
|
366 |
+
self.nf,
|
367 |
+
self.embed_dim,
|
368 |
+
self.ch_mult,
|
369 |
+
self.n_blocks,
|
370 |
+
self.resolution,
|
371 |
+
self.attn_resolutions
|
372 |
+
)
|
373 |
+
|
374 |
+
if model_path is not None:
|
375 |
+
chkpt = torch.load(model_path, map_location='cpu')
|
376 |
+
if 'params_ema' in chkpt:
|
377 |
+
self.load_state_dict(torch.load(model_path, map_location='cpu')['params_ema'])
|
378 |
+
logger.info(f'vqgan is loaded from: {model_path} [params_ema]')
|
379 |
+
elif 'params' in chkpt:
|
380 |
+
self.load_state_dict(torch.load(model_path, map_location='cpu')['params'])
|
381 |
+
logger.info(f'vqgan is loaded from: {model_path} [params]')
|
382 |
+
else:
|
383 |
+
raise ValueError(f'Wrong params!')
|
384 |
+
|
385 |
+
|
386 |
+
def forward(self, x):
|
387 |
+
x = self.encoder(x)
|
388 |
+
quant, codebook_loss, quant_stats = self.quantize(x)
|
389 |
+
x = self.generator(quant)
|
390 |
+
return x, codebook_loss, quant_stats
|
391 |
+
|
392 |
+
|
393 |
+
|
394 |
+
# patch based discriminator
|
395 |
+
@ARCH_REGISTRY.register()
|
396 |
+
class VQGANDiscriminator(nn.Module):
|
397 |
+
def __init__(self, nc=3, ndf=64, n_layers=4, model_path=None):
|
398 |
+
super().__init__()
|
399 |
+
|
400 |
+
layers = [nn.Conv2d(nc, ndf, kernel_size=4, stride=2, padding=1), nn.LeakyReLU(0.2, True)]
|
401 |
+
ndf_mult = 1
|
402 |
+
ndf_mult_prev = 1
|
403 |
+
for n in range(1, n_layers): # gradually increase the number of filters
|
404 |
+
ndf_mult_prev = ndf_mult
|
405 |
+
ndf_mult = min(2 ** n, 8)
|
406 |
+
layers += [
|
407 |
+
nn.Conv2d(ndf * ndf_mult_prev, ndf * ndf_mult, kernel_size=4, stride=2, padding=1, bias=False),
|
408 |
+
nn.BatchNorm2d(ndf * ndf_mult),
|
409 |
+
nn.LeakyReLU(0.2, True)
|
410 |
+
]
|
411 |
+
|
412 |
+
ndf_mult_prev = ndf_mult
|
413 |
+
ndf_mult = min(2 ** n_layers, 8)
|
414 |
+
|
415 |
+
layers += [
|
416 |
+
nn.Conv2d(ndf * ndf_mult_prev, ndf * ndf_mult, kernel_size=4, stride=1, padding=1, bias=False),
|
417 |
+
nn.BatchNorm2d(ndf * ndf_mult),
|
418 |
+
nn.LeakyReLU(0.2, True)
|
419 |
+
]
|
420 |
+
|
421 |
+
layers += [
|
422 |
+
nn.Conv2d(ndf * ndf_mult, 1, kernel_size=4, stride=1, padding=1)] # output 1 channel prediction map
|
423 |
+
self.main = nn.Sequential(*layers)
|
424 |
+
|
425 |
+
if model_path is not None:
|
426 |
+
chkpt = torch.load(model_path, map_location='cpu')
|
427 |
+
if 'params_d' in chkpt:
|
428 |
+
self.load_state_dict(torch.load(model_path, map_location='cpu')['params_d'])
|
429 |
+
elif 'params' in chkpt:
|
430 |
+
self.load_state_dict(torch.load(model_path, map_location='cpu')['params'])
|
431 |
+
else:
|
432 |
+
raise ValueError(f'Wrong params!')
|
433 |
+
|
434 |
+
def forward(self, x):
|
435 |
+
return self.main(x)
|
post_process/inswapper/CodeFormer/CodeFormer/basicsr/data/__init__.py
ADDED
@@ -0,0 +1,100 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import importlib
|
2 |
+
import numpy as np
|
3 |
+
import random
|
4 |
+
import torch
|
5 |
+
import torch.utils.data
|
6 |
+
from copy import deepcopy
|
7 |
+
from functools import partial
|
8 |
+
from os import path as osp
|
9 |
+
|
10 |
+
from basicsr.data.prefetch_dataloader import PrefetchDataLoader
|
11 |
+
from basicsr.utils import get_root_logger, scandir
|
12 |
+
from basicsr.utils.dist_util import get_dist_info
|
13 |
+
from basicsr.utils.registry import DATASET_REGISTRY
|
14 |
+
|
15 |
+
__all__ = ['build_dataset', 'build_dataloader']
|
16 |
+
|
17 |
+
# automatically scan and import dataset modules for registry
|
18 |
+
# scan all the files under the data folder with '_dataset' in file names
|
19 |
+
data_folder = osp.dirname(osp.abspath(__file__))
|
20 |
+
dataset_filenames = [osp.splitext(osp.basename(v))[0] for v in scandir(data_folder) if v.endswith('_dataset.py')]
|
21 |
+
# import all the dataset modules
|
22 |
+
_dataset_modules = [importlib.import_module(f'basicsr.data.{file_name}') for file_name in dataset_filenames]
|
23 |
+
|
24 |
+
|
25 |
+
def build_dataset(dataset_opt):
|
26 |
+
"""Build dataset from options.
|
27 |
+
|
28 |
+
Args:
|
29 |
+
dataset_opt (dict): Configuration for dataset. It must constain:
|
30 |
+
name (str): Dataset name.
|
31 |
+
type (str): Dataset type.
|
32 |
+
"""
|
33 |
+
dataset_opt = deepcopy(dataset_opt)
|
34 |
+
dataset = DATASET_REGISTRY.get(dataset_opt['type'])(dataset_opt)
|
35 |
+
logger = get_root_logger()
|
36 |
+
logger.info(f'Dataset [{dataset.__class__.__name__}] - {dataset_opt["name"]} ' 'is built.')
|
37 |
+
return dataset
|
38 |
+
|
39 |
+
|
40 |
+
def build_dataloader(dataset, dataset_opt, num_gpu=1, dist=False, sampler=None, seed=None):
|
41 |
+
"""Build dataloader.
|
42 |
+
|
43 |
+
Args:
|
44 |
+
dataset (torch.utils.data.Dataset): Dataset.
|
45 |
+
dataset_opt (dict): Dataset options. It contains the following keys:
|
46 |
+
phase (str): 'train' or 'val'.
|
47 |
+
num_worker_per_gpu (int): Number of workers for each GPU.
|
48 |
+
batch_size_per_gpu (int): Training batch size for each GPU.
|
49 |
+
num_gpu (int): Number of GPUs. Used only in the train phase.
|
50 |
+
Default: 1.
|
51 |
+
dist (bool): Whether in distributed training. Used only in the train
|
52 |
+
phase. Default: False.
|
53 |
+
sampler (torch.utils.data.sampler): Data sampler. Default: None.
|
54 |
+
seed (int | None): Seed. Default: None
|
55 |
+
"""
|
56 |
+
phase = dataset_opt['phase']
|
57 |
+
rank, _ = get_dist_info()
|
58 |
+
if phase == 'train':
|
59 |
+
if dist: # distributed training
|
60 |
+
batch_size = dataset_opt['batch_size_per_gpu']
|
61 |
+
num_workers = dataset_opt['num_worker_per_gpu']
|
62 |
+
else: # non-distributed training
|
63 |
+
multiplier = 1 if num_gpu == 0 else num_gpu
|
64 |
+
batch_size = dataset_opt['batch_size_per_gpu'] * multiplier
|
65 |
+
num_workers = dataset_opt['num_worker_per_gpu'] * multiplier
|
66 |
+
dataloader_args = dict(
|
67 |
+
dataset=dataset,
|
68 |
+
batch_size=batch_size,
|
69 |
+
shuffle=False,
|
70 |
+
num_workers=num_workers,
|
71 |
+
sampler=sampler,
|
72 |
+
drop_last=True)
|
73 |
+
if sampler is None:
|
74 |
+
dataloader_args['shuffle'] = True
|
75 |
+
dataloader_args['worker_init_fn'] = partial(
|
76 |
+
worker_init_fn, num_workers=num_workers, rank=rank, seed=seed) if seed is not None else None
|
77 |
+
elif phase in ['val', 'test']: # validation
|
78 |
+
dataloader_args = dict(dataset=dataset, batch_size=1, shuffle=False, num_workers=0)
|
79 |
+
else:
|
80 |
+
raise ValueError(f'Wrong dataset phase: {phase}. ' "Supported ones are 'train', 'val' and 'test'.")
|
81 |
+
|
82 |
+
dataloader_args['pin_memory'] = dataset_opt.get('pin_memory', False)
|
83 |
+
|
84 |
+
prefetch_mode = dataset_opt.get('prefetch_mode')
|
85 |
+
if prefetch_mode == 'cpu': # CPUPrefetcher
|
86 |
+
num_prefetch_queue = dataset_opt.get('num_prefetch_queue', 1)
|
87 |
+
logger = get_root_logger()
|
88 |
+
logger.info(f'Use {prefetch_mode} prefetch dataloader: ' f'num_prefetch_queue = {num_prefetch_queue}')
|
89 |
+
return PrefetchDataLoader(num_prefetch_queue=num_prefetch_queue, **dataloader_args)
|
90 |
+
else:
|
91 |
+
# prefetch_mode=None: Normal dataloader
|
92 |
+
# prefetch_mode='cuda': dataloader for CUDAPrefetcher
|
93 |
+
return torch.utils.data.DataLoader(**dataloader_args)
|
94 |
+
|
95 |
+
|
96 |
+
def worker_init_fn(worker_id, num_workers, rank, seed):
|
97 |
+
# Set the worker seed to num_workers * rank + worker_id + seed
|
98 |
+
worker_seed = num_workers * rank + worker_id + seed
|
99 |
+
np.random.seed(worker_seed)
|
100 |
+
random.seed(worker_seed)
|
post_process/inswapper/CodeFormer/CodeFormer/basicsr/data/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (3.56 kB). View file
|
|
post_process/inswapper/CodeFormer/CodeFormer/basicsr/data/__pycache__/data_sampler.cpython-310.pyc
ADDED
Binary file (2.16 kB). View file
|
|
post_process/inswapper/CodeFormer/CodeFormer/basicsr/data/__pycache__/prefetch_dataloader.cpython-310.pyc
ADDED
Binary file (4.36 kB). View file
|
|
post_process/inswapper/CodeFormer/CodeFormer/basicsr/data/data_sampler.py
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import torch
|
3 |
+
from torch.utils.data.sampler import Sampler
|
4 |
+
|
5 |
+
|
6 |
+
class EnlargedSampler(Sampler):
|
7 |
+
"""Sampler that restricts data loading to a subset of the dataset.
|
8 |
+
|
9 |
+
Modified from torch.utils.data.distributed.DistributedSampler
|
10 |
+
Support enlarging the dataset for iteration-based training, for saving
|
11 |
+
time when restart the dataloader after each epoch
|
12 |
+
|
13 |
+
Args:
|
14 |
+
dataset (torch.utils.data.Dataset): Dataset used for sampling.
|
15 |
+
num_replicas (int | None): Number of processes participating in
|
16 |
+
the training. It is usually the world_size.
|
17 |
+
rank (int | None): Rank of the current process within num_replicas.
|
18 |
+
ratio (int): Enlarging ratio. Default: 1.
|
19 |
+
"""
|
20 |
+
|
21 |
+
def __init__(self, dataset, num_replicas, rank, ratio=1):
|
22 |
+
self.dataset = dataset
|
23 |
+
self.num_replicas = num_replicas
|
24 |
+
self.rank = rank
|
25 |
+
self.epoch = 0
|
26 |
+
self.num_samples = math.ceil(len(self.dataset) * ratio / self.num_replicas)
|
27 |
+
self.total_size = self.num_samples * self.num_replicas
|
28 |
+
|
29 |
+
def __iter__(self):
|
30 |
+
# deterministically shuffle based on epoch
|
31 |
+
g = torch.Generator()
|
32 |
+
g.manual_seed(self.epoch)
|
33 |
+
indices = torch.randperm(self.total_size, generator=g).tolist()
|
34 |
+
|
35 |
+
dataset_size = len(self.dataset)
|
36 |
+
indices = [v % dataset_size for v in indices]
|
37 |
+
|
38 |
+
# subsample
|
39 |
+
indices = indices[self.rank:self.total_size:self.num_replicas]
|
40 |
+
assert len(indices) == self.num_samples
|
41 |
+
|
42 |
+
return iter(indices)
|
43 |
+
|
44 |
+
def __len__(self):
|
45 |
+
return self.num_samples
|
46 |
+
|
47 |
+
def set_epoch(self, epoch):
|
48 |
+
self.epoch = epoch
|
post_process/inswapper/CodeFormer/CodeFormer/basicsr/data/data_util.py
ADDED
@@ -0,0 +1,305 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import numpy as np
|
3 |
+
import torch
|
4 |
+
from os import path as osp
|
5 |
+
from torch.nn import functional as F
|
6 |
+
|
7 |
+
from basicsr.data.transforms import mod_crop
|
8 |
+
from basicsr.utils import img2tensor, scandir
|
9 |
+
|
10 |
+
|
11 |
+
def read_img_seq(path, require_mod_crop=False, scale=1):
|
12 |
+
"""Read a sequence of images from a given folder path.
|
13 |
+
|
14 |
+
Args:
|
15 |
+
path (list[str] | str): List of image paths or image folder path.
|
16 |
+
require_mod_crop (bool): Require mod crop for each image.
|
17 |
+
Default: False.
|
18 |
+
scale (int): Scale factor for mod_crop. Default: 1.
|
19 |
+
|
20 |
+
Returns:
|
21 |
+
Tensor: size (t, c, h, w), RGB, [0, 1].
|
22 |
+
"""
|
23 |
+
if isinstance(path, list):
|
24 |
+
img_paths = path
|
25 |
+
else:
|
26 |
+
img_paths = sorted(list(scandir(path, full_path=True)))
|
27 |
+
imgs = [cv2.imread(v).astype(np.float32) / 255. for v in img_paths]
|
28 |
+
if require_mod_crop:
|
29 |
+
imgs = [mod_crop(img, scale) for img in imgs]
|
30 |
+
imgs = img2tensor(imgs, bgr2rgb=True, float32=True)
|
31 |
+
imgs = torch.stack(imgs, dim=0)
|
32 |
+
return imgs
|
33 |
+
|
34 |
+
|
35 |
+
def generate_frame_indices(crt_idx, max_frame_num, num_frames, padding='reflection'):
|
36 |
+
"""Generate an index list for reading `num_frames` frames from a sequence
|
37 |
+
of images.
|
38 |
+
|
39 |
+
Args:
|
40 |
+
crt_idx (int): Current center index.
|
41 |
+
max_frame_num (int): Max number of the sequence of images (from 1).
|
42 |
+
num_frames (int): Reading num_frames frames.
|
43 |
+
padding (str): Padding mode, one of
|
44 |
+
'replicate' | 'reflection' | 'reflection_circle' | 'circle'
|
45 |
+
Examples: current_idx = 0, num_frames = 5
|
46 |
+
The generated frame indices under different padding mode:
|
47 |
+
replicate: [0, 0, 0, 1, 2]
|
48 |
+
reflection: [2, 1, 0, 1, 2]
|
49 |
+
reflection_circle: [4, 3, 0, 1, 2]
|
50 |
+
circle: [3, 4, 0, 1, 2]
|
51 |
+
|
52 |
+
Returns:
|
53 |
+
list[int]: A list of indices.
|
54 |
+
"""
|
55 |
+
assert num_frames % 2 == 1, 'num_frames should be an odd number.'
|
56 |
+
assert padding in ('replicate', 'reflection', 'reflection_circle', 'circle'), f'Wrong padding mode: {padding}.'
|
57 |
+
|
58 |
+
max_frame_num = max_frame_num - 1 # start from 0
|
59 |
+
num_pad = num_frames // 2
|
60 |
+
|
61 |
+
indices = []
|
62 |
+
for i in range(crt_idx - num_pad, crt_idx + num_pad + 1):
|
63 |
+
if i < 0:
|
64 |
+
if padding == 'replicate':
|
65 |
+
pad_idx = 0
|
66 |
+
elif padding == 'reflection':
|
67 |
+
pad_idx = -i
|
68 |
+
elif padding == 'reflection_circle':
|
69 |
+
pad_idx = crt_idx + num_pad - i
|
70 |
+
else:
|
71 |
+
pad_idx = num_frames + i
|
72 |
+
elif i > max_frame_num:
|
73 |
+
if padding == 'replicate':
|
74 |
+
pad_idx = max_frame_num
|
75 |
+
elif padding == 'reflection':
|
76 |
+
pad_idx = max_frame_num * 2 - i
|
77 |
+
elif padding == 'reflection_circle':
|
78 |
+
pad_idx = (crt_idx - num_pad) - (i - max_frame_num)
|
79 |
+
else:
|
80 |
+
pad_idx = i - num_frames
|
81 |
+
else:
|
82 |
+
pad_idx = i
|
83 |
+
indices.append(pad_idx)
|
84 |
+
return indices
|
85 |
+
|
86 |
+
|
87 |
+
def paired_paths_from_lmdb(folders, keys):
|
88 |
+
"""Generate paired paths from lmdb files.
|
89 |
+
|
90 |
+
Contents of lmdb. Taking the `lq.lmdb` for example, the file structure is:
|
91 |
+
|
92 |
+
lq.lmdb
|
93 |
+
├── data.mdb
|
94 |
+
├── lock.mdb
|
95 |
+
├── meta_info.txt
|
96 |
+
|
97 |
+
The data.mdb and lock.mdb are standard lmdb files and you can refer to
|
98 |
+
https://lmdb.readthedocs.io/en/release/ for more details.
|
99 |
+
|
100 |
+
The meta_info.txt is a specified txt file to record the meta information
|
101 |
+
of our datasets. It will be automatically created when preparing
|
102 |
+
datasets by our provided dataset tools.
|
103 |
+
Each line in the txt file records
|
104 |
+
1)image name (with extension),
|
105 |
+
2)image shape,
|
106 |
+
3)compression level, separated by a white space.
|
107 |
+
Example: `baboon.png (120,125,3) 1`
|
108 |
+
|
109 |
+
We use the image name without extension as the lmdb key.
|
110 |
+
Note that we use the same key for the corresponding lq and gt images.
|
111 |
+
|
112 |
+
Args:
|
113 |
+
folders (list[str]): A list of folder path. The order of list should
|
114 |
+
be [input_folder, gt_folder].
|
115 |
+
keys (list[str]): A list of keys identifying folders. The order should
|
116 |
+
be in consistent with folders, e.g., ['lq', 'gt'].
|
117 |
+
Note that this key is different from lmdb keys.
|
118 |
+
|
119 |
+
Returns:
|
120 |
+
list[str]: Returned path list.
|
121 |
+
"""
|
122 |
+
assert len(folders) == 2, ('The len of folders should be 2 with [input_folder, gt_folder]. '
|
123 |
+
f'But got {len(folders)}')
|
124 |
+
assert len(keys) == 2, ('The len of keys should be 2 with [input_key, gt_key]. ' f'But got {len(keys)}')
|
125 |
+
input_folder, gt_folder = folders
|
126 |
+
input_key, gt_key = keys
|
127 |
+
|
128 |
+
if not (input_folder.endswith('.lmdb') and gt_folder.endswith('.lmdb')):
|
129 |
+
raise ValueError(f'{input_key} folder and {gt_key} folder should both in lmdb '
|
130 |
+
f'formats. But received {input_key}: {input_folder}; '
|
131 |
+
f'{gt_key}: {gt_folder}')
|
132 |
+
# ensure that the two meta_info files are the same
|
133 |
+
with open(osp.join(input_folder, 'meta_info.txt')) as fin:
|
134 |
+
input_lmdb_keys = [line.split('.')[0] for line in fin]
|
135 |
+
with open(osp.join(gt_folder, 'meta_info.txt')) as fin:
|
136 |
+
gt_lmdb_keys = [line.split('.')[0] for line in fin]
|
137 |
+
if set(input_lmdb_keys) != set(gt_lmdb_keys):
|
138 |
+
raise ValueError(f'Keys in {input_key}_folder and {gt_key}_folder are different.')
|
139 |
+
else:
|
140 |
+
paths = []
|
141 |
+
for lmdb_key in sorted(input_lmdb_keys):
|
142 |
+
paths.append(dict([(f'{input_key}_path', lmdb_key), (f'{gt_key}_path', lmdb_key)]))
|
143 |
+
return paths
|
144 |
+
|
145 |
+
|
146 |
+
def paired_paths_from_meta_info_file(folders, keys, meta_info_file, filename_tmpl):
|
147 |
+
"""Generate paired paths from an meta information file.
|
148 |
+
|
149 |
+
Each line in the meta information file contains the image names and
|
150 |
+
image shape (usually for gt), separated by a white space.
|
151 |
+
|
152 |
+
Example of an meta information file:
|
153 |
+
```
|
154 |
+
0001_s001.png (480,480,3)
|
155 |
+
0001_s002.png (480,480,3)
|
156 |
+
```
|
157 |
+
|
158 |
+
Args:
|
159 |
+
folders (list[str]): A list of folder path. The order of list should
|
160 |
+
be [input_folder, gt_folder].
|
161 |
+
keys (list[str]): A list of keys identifying folders. The order should
|
162 |
+
be in consistent with folders, e.g., ['lq', 'gt'].
|
163 |
+
meta_info_file (str): Path to the meta information file.
|
164 |
+
filename_tmpl (str): Template for each filename. Note that the
|
165 |
+
template excludes the file extension. Usually the filename_tmpl is
|
166 |
+
for files in the input folder.
|
167 |
+
|
168 |
+
Returns:
|
169 |
+
list[str]: Returned path list.
|
170 |
+
"""
|
171 |
+
assert len(folders) == 2, ('The len of folders should be 2 with [input_folder, gt_folder]. '
|
172 |
+
f'But got {len(folders)}')
|
173 |
+
assert len(keys) == 2, ('The len of keys should be 2 with [input_key, gt_key]. ' f'But got {len(keys)}')
|
174 |
+
input_folder, gt_folder = folders
|
175 |
+
input_key, gt_key = keys
|
176 |
+
|
177 |
+
with open(meta_info_file, 'r') as fin:
|
178 |
+
gt_names = [line.split(' ')[0] for line in fin]
|
179 |
+
|
180 |
+
paths = []
|
181 |
+
for gt_name in gt_names:
|
182 |
+
basename, ext = osp.splitext(osp.basename(gt_name))
|
183 |
+
input_name = f'{filename_tmpl.format(basename)}{ext}'
|
184 |
+
input_path = osp.join(input_folder, input_name)
|
185 |
+
gt_path = osp.join(gt_folder, gt_name)
|
186 |
+
paths.append(dict([(f'{input_key}_path', input_path), (f'{gt_key}_path', gt_path)]))
|
187 |
+
return paths
|
188 |
+
|
189 |
+
|
190 |
+
def paired_paths_from_folder(folders, keys, filename_tmpl):
|
191 |
+
"""Generate paired paths from folders.
|
192 |
+
|
193 |
+
Args:
|
194 |
+
folders (list[str]): A list of folder path. The order of list should
|
195 |
+
be [input_folder, gt_folder].
|
196 |
+
keys (list[str]): A list of keys identifying folders. The order should
|
197 |
+
be in consistent with folders, e.g., ['lq', 'gt'].
|
198 |
+
filename_tmpl (str): Template for each filename. Note that the
|
199 |
+
template excludes the file extension. Usually the filename_tmpl is
|
200 |
+
for files in the input folder.
|
201 |
+
|
202 |
+
Returns:
|
203 |
+
list[str]: Returned path list.
|
204 |
+
"""
|
205 |
+
assert len(folders) == 2, ('The len of folders should be 2 with [input_folder, gt_folder]. '
|
206 |
+
f'But got {len(folders)}')
|
207 |
+
assert len(keys) == 2, ('The len of keys should be 2 with [input_key, gt_key]. ' f'But got {len(keys)}')
|
208 |
+
input_folder, gt_folder = folders
|
209 |
+
input_key, gt_key = keys
|
210 |
+
|
211 |
+
input_paths = list(scandir(input_folder))
|
212 |
+
gt_paths = list(scandir(gt_folder))
|
213 |
+
assert len(input_paths) == len(gt_paths), (f'{input_key} and {gt_key} datasets have different number of images: '
|
214 |
+
f'{len(input_paths)}, {len(gt_paths)}.')
|
215 |
+
paths = []
|
216 |
+
for gt_path in gt_paths:
|
217 |
+
basename, ext = osp.splitext(osp.basename(gt_path))
|
218 |
+
input_name = f'{filename_tmpl.format(basename)}{ext}'
|
219 |
+
input_path = osp.join(input_folder, input_name)
|
220 |
+
assert input_name in input_paths, (f'{input_name} is not in ' f'{input_key}_paths.')
|
221 |
+
gt_path = osp.join(gt_folder, gt_path)
|
222 |
+
paths.append(dict([(f'{input_key}_path', input_path), (f'{gt_key}_path', gt_path)]))
|
223 |
+
return paths
|
224 |
+
|
225 |
+
|
226 |
+
def paths_from_folder(folder):
|
227 |
+
"""Generate paths from folder.
|
228 |
+
|
229 |
+
Args:
|
230 |
+
folder (str): Folder path.
|
231 |
+
|
232 |
+
Returns:
|
233 |
+
list[str]: Returned path list.
|
234 |
+
"""
|
235 |
+
|
236 |
+
paths = list(scandir(folder))
|
237 |
+
paths = [osp.join(folder, path) for path in paths]
|
238 |
+
return paths
|
239 |
+
|
240 |
+
|
241 |
+
def paths_from_lmdb(folder):
|
242 |
+
"""Generate paths from lmdb.
|
243 |
+
|
244 |
+
Args:
|
245 |
+
folder (str): Folder path.
|
246 |
+
|
247 |
+
Returns:
|
248 |
+
list[str]: Returned path list.
|
249 |
+
"""
|
250 |
+
if not folder.endswith('.lmdb'):
|
251 |
+
raise ValueError(f'Folder {folder}folder should in lmdb format.')
|
252 |
+
with open(osp.join(folder, 'meta_info.txt')) as fin:
|
253 |
+
paths = [line.split('.')[0] for line in fin]
|
254 |
+
return paths
|
255 |
+
|
256 |
+
|
257 |
+
def generate_gaussian_kernel(kernel_size=13, sigma=1.6):
|
258 |
+
"""Generate Gaussian kernel used in `duf_downsample`.
|
259 |
+
|
260 |
+
Args:
|
261 |
+
kernel_size (int): Kernel size. Default: 13.
|
262 |
+
sigma (float): Sigma of the Gaussian kernel. Default: 1.6.
|
263 |
+
|
264 |
+
Returns:
|
265 |
+
np.array: The Gaussian kernel.
|
266 |
+
"""
|
267 |
+
from scipy.ndimage import filters as filters
|
268 |
+
kernel = np.zeros((kernel_size, kernel_size))
|
269 |
+
# set element at the middle to one, a dirac delta
|
270 |
+
kernel[kernel_size // 2, kernel_size // 2] = 1
|
271 |
+
# gaussian-smooth the dirac, resulting in a gaussian filter
|
272 |
+
return filters.gaussian_filter(kernel, sigma)
|
273 |
+
|
274 |
+
|
275 |
+
def duf_downsample(x, kernel_size=13, scale=4):
|
276 |
+
"""Downsamping with Gaussian kernel used in the DUF official code.
|
277 |
+
|
278 |
+
Args:
|
279 |
+
x (Tensor): Frames to be downsampled, with shape (b, t, c, h, w).
|
280 |
+
kernel_size (int): Kernel size. Default: 13.
|
281 |
+
scale (int): Downsampling factor. Supported scale: (2, 3, 4).
|
282 |
+
Default: 4.
|
283 |
+
|
284 |
+
Returns:
|
285 |
+
Tensor: DUF downsampled frames.
|
286 |
+
"""
|
287 |
+
assert scale in (2, 3, 4), f'Only support scale (2, 3, 4), but got {scale}.'
|
288 |
+
|
289 |
+
squeeze_flag = False
|
290 |
+
if x.ndim == 4:
|
291 |
+
squeeze_flag = True
|
292 |
+
x = x.unsqueeze(0)
|
293 |
+
b, t, c, h, w = x.size()
|
294 |
+
x = x.view(-1, 1, h, w)
|
295 |
+
pad_w, pad_h = kernel_size // 2 + scale * 2, kernel_size // 2 + scale * 2
|
296 |
+
x = F.pad(x, (pad_w, pad_w, pad_h, pad_h), 'reflect')
|
297 |
+
|
298 |
+
gaussian_filter = generate_gaussian_kernel(kernel_size, 0.4 * scale)
|
299 |
+
gaussian_filter = torch.from_numpy(gaussian_filter).type_as(x).unsqueeze(0).unsqueeze(0)
|
300 |
+
x = F.conv2d(x, gaussian_filter, stride=scale)
|
301 |
+
x = x[:, :, 2:-2, 2:-2]
|
302 |
+
x = x.view(b, t, c, x.size(2), x.size(3))
|
303 |
+
if squeeze_flag:
|
304 |
+
x = x.squeeze(0)
|
305 |
+
return x
|
post_process/inswapper/CodeFormer/CodeFormer/basicsr/data/prefetch_dataloader.py
ADDED
@@ -0,0 +1,125 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import queue as Queue
|
2 |
+
import threading
|
3 |
+
import torch
|
4 |
+
from torch.utils.data import DataLoader
|
5 |
+
|
6 |
+
|
7 |
+
class PrefetchGenerator(threading.Thread):
|
8 |
+
"""A general prefetch generator.
|
9 |
+
|
10 |
+
Ref:
|
11 |
+
https://stackoverflow.com/questions/7323664/python-generator-pre-fetch
|
12 |
+
|
13 |
+
Args:
|
14 |
+
generator: Python generator.
|
15 |
+
num_prefetch_queue (int): Number of prefetch queue.
|
16 |
+
"""
|
17 |
+
|
18 |
+
def __init__(self, generator, num_prefetch_queue):
|
19 |
+
threading.Thread.__init__(self)
|
20 |
+
self.queue = Queue.Queue(num_prefetch_queue)
|
21 |
+
self.generator = generator
|
22 |
+
self.daemon = True
|
23 |
+
self.start()
|
24 |
+
|
25 |
+
def run(self):
|
26 |
+
for item in self.generator:
|
27 |
+
self.queue.put(item)
|
28 |
+
self.queue.put(None)
|
29 |
+
|
30 |
+
def __next__(self):
|
31 |
+
next_item = self.queue.get()
|
32 |
+
if next_item is None:
|
33 |
+
raise StopIteration
|
34 |
+
return next_item
|
35 |
+
|
36 |
+
def __iter__(self):
|
37 |
+
return self
|
38 |
+
|
39 |
+
|
40 |
+
class PrefetchDataLoader(DataLoader):
|
41 |
+
"""Prefetch version of dataloader.
|
42 |
+
|
43 |
+
Ref:
|
44 |
+
https://github.com/IgorSusmelj/pytorch-styleguide/issues/5#
|
45 |
+
|
46 |
+
TODO:
|
47 |
+
Need to test on single gpu and ddp (multi-gpu). There is a known issue in
|
48 |
+
ddp.
|
49 |
+
|
50 |
+
Args:
|
51 |
+
num_prefetch_queue (int): Number of prefetch queue.
|
52 |
+
kwargs (dict): Other arguments for dataloader.
|
53 |
+
"""
|
54 |
+
|
55 |
+
def __init__(self, num_prefetch_queue, **kwargs):
|
56 |
+
self.num_prefetch_queue = num_prefetch_queue
|
57 |
+
super(PrefetchDataLoader, self).__init__(**kwargs)
|
58 |
+
|
59 |
+
def __iter__(self):
|
60 |
+
return PrefetchGenerator(super().__iter__(), self.num_prefetch_queue)
|
61 |
+
|
62 |
+
|
63 |
+
class CPUPrefetcher():
|
64 |
+
"""CPU prefetcher.
|
65 |
+
|
66 |
+
Args:
|
67 |
+
loader: Dataloader.
|
68 |
+
"""
|
69 |
+
|
70 |
+
def __init__(self, loader):
|
71 |
+
self.ori_loader = loader
|
72 |
+
self.loader = iter(loader)
|
73 |
+
|
74 |
+
def next(self):
|
75 |
+
try:
|
76 |
+
return next(self.loader)
|
77 |
+
except StopIteration:
|
78 |
+
return None
|
79 |
+
|
80 |
+
def reset(self):
|
81 |
+
self.loader = iter(self.ori_loader)
|
82 |
+
|
83 |
+
|
84 |
+
class CUDAPrefetcher():
|
85 |
+
"""CUDA prefetcher.
|
86 |
+
|
87 |
+
Ref:
|
88 |
+
https://github.com/NVIDIA/apex/issues/304#
|
89 |
+
|
90 |
+
It may consums more GPU memory.
|
91 |
+
|
92 |
+
Args:
|
93 |
+
loader: Dataloader.
|
94 |
+
opt (dict): Options.
|
95 |
+
"""
|
96 |
+
|
97 |
+
def __init__(self, loader, opt):
|
98 |
+
self.ori_loader = loader
|
99 |
+
self.loader = iter(loader)
|
100 |
+
self.opt = opt
|
101 |
+
self.stream = torch.cuda.Stream()
|
102 |
+
self.device = torch.device('cuda' if opt['num_gpu'] != 0 else 'cpu')
|
103 |
+
self.preload()
|
104 |
+
|
105 |
+
def preload(self):
|
106 |
+
try:
|
107 |
+
self.batch = next(self.loader) # self.batch is a dict
|
108 |
+
except StopIteration:
|
109 |
+
self.batch = None
|
110 |
+
return None
|
111 |
+
# put tensors to gpu
|
112 |
+
with torch.cuda.stream(self.stream):
|
113 |
+
for k, v in self.batch.items():
|
114 |
+
if torch.is_tensor(v):
|
115 |
+
self.batch[k] = self.batch[k].to(device=self.device, non_blocking=True)
|
116 |
+
|
117 |
+
def next(self):
|
118 |
+
torch.cuda.current_stream().wait_stream(self.stream)
|
119 |
+
batch = self.batch
|
120 |
+
self.preload()
|
121 |
+
return batch
|
122 |
+
|
123 |
+
def reset(self):
|
124 |
+
self.loader = iter(self.ori_loader)
|
125 |
+
self.preload()
|
post_process/inswapper/CodeFormer/CodeFormer/basicsr/data/transforms.py
ADDED
@@ -0,0 +1,165 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import random
|
3 |
+
|
4 |
+
|
5 |
+
def mod_crop(img, scale):
|
6 |
+
"""Mod crop images, used during testing.
|
7 |
+
|
8 |
+
Args:
|
9 |
+
img (ndarray): Input image.
|
10 |
+
scale (int): Scale factor.
|
11 |
+
|
12 |
+
Returns:
|
13 |
+
ndarray: Result image.
|
14 |
+
"""
|
15 |
+
img = img.copy()
|
16 |
+
if img.ndim in (2, 3):
|
17 |
+
h, w = img.shape[0], img.shape[1]
|
18 |
+
h_remainder, w_remainder = h % scale, w % scale
|
19 |
+
img = img[:h - h_remainder, :w - w_remainder, ...]
|
20 |
+
else:
|
21 |
+
raise ValueError(f'Wrong img ndim: {img.ndim}.')
|
22 |
+
return img
|
23 |
+
|
24 |
+
|
25 |
+
def paired_random_crop(img_gts, img_lqs, gt_patch_size, scale, gt_path):
|
26 |
+
"""Paired random crop.
|
27 |
+
|
28 |
+
It crops lists of lq and gt images with corresponding locations.
|
29 |
+
|
30 |
+
Args:
|
31 |
+
img_gts (list[ndarray] | ndarray): GT images. Note that all images
|
32 |
+
should have the same shape. If the input is an ndarray, it will
|
33 |
+
be transformed to a list containing itself.
|
34 |
+
img_lqs (list[ndarray] | ndarray): LQ images. Note that all images
|
35 |
+
should have the same shape. If the input is an ndarray, it will
|
36 |
+
be transformed to a list containing itself.
|
37 |
+
gt_patch_size (int): GT patch size.
|
38 |
+
scale (int): Scale factor.
|
39 |
+
gt_path (str): Path to ground-truth.
|
40 |
+
|
41 |
+
Returns:
|
42 |
+
list[ndarray] | ndarray: GT images and LQ images. If returned results
|
43 |
+
only have one element, just return ndarray.
|
44 |
+
"""
|
45 |
+
|
46 |
+
if not isinstance(img_gts, list):
|
47 |
+
img_gts = [img_gts]
|
48 |
+
if not isinstance(img_lqs, list):
|
49 |
+
img_lqs = [img_lqs]
|
50 |
+
|
51 |
+
h_lq, w_lq, _ = img_lqs[0].shape
|
52 |
+
h_gt, w_gt, _ = img_gts[0].shape
|
53 |
+
lq_patch_size = gt_patch_size // scale
|
54 |
+
|
55 |
+
if h_gt != h_lq * scale or w_gt != w_lq * scale:
|
56 |
+
raise ValueError(f'Scale mismatches. GT ({h_gt}, {w_gt}) is not {scale}x ',
|
57 |
+
f'multiplication of LQ ({h_lq}, {w_lq}).')
|
58 |
+
if h_lq < lq_patch_size or w_lq < lq_patch_size:
|
59 |
+
raise ValueError(f'LQ ({h_lq}, {w_lq}) is smaller than patch size '
|
60 |
+
f'({lq_patch_size}, {lq_patch_size}). '
|
61 |
+
f'Please remove {gt_path}.')
|
62 |
+
|
63 |
+
# randomly choose top and left coordinates for lq patch
|
64 |
+
top = random.randint(0, h_lq - lq_patch_size)
|
65 |
+
left = random.randint(0, w_lq - lq_patch_size)
|
66 |
+
|
67 |
+
# crop lq patch
|
68 |
+
img_lqs = [v[top:top + lq_patch_size, left:left + lq_patch_size, ...] for v in img_lqs]
|
69 |
+
|
70 |
+
# crop corresponding gt patch
|
71 |
+
top_gt, left_gt = int(top * scale), int(left * scale)
|
72 |
+
img_gts = [v[top_gt:top_gt + gt_patch_size, left_gt:left_gt + gt_patch_size, ...] for v in img_gts]
|
73 |
+
if len(img_gts) == 1:
|
74 |
+
img_gts = img_gts[0]
|
75 |
+
if len(img_lqs) == 1:
|
76 |
+
img_lqs = img_lqs[0]
|
77 |
+
return img_gts, img_lqs
|
78 |
+
|
79 |
+
|
80 |
+
def augment(imgs, hflip=True, rotation=True, flows=None, return_status=False):
|
81 |
+
"""Augment: horizontal flips OR rotate (0, 90, 180, 270 degrees).
|
82 |
+
|
83 |
+
We use vertical flip and transpose for rotation implementation.
|
84 |
+
All the images in the list use the same augmentation.
|
85 |
+
|
86 |
+
Args:
|
87 |
+
imgs (list[ndarray] | ndarray): Images to be augmented. If the input
|
88 |
+
is an ndarray, it will be transformed to a list.
|
89 |
+
hflip (bool): Horizontal flip. Default: True.
|
90 |
+
rotation (bool): Ratotation. Default: True.
|
91 |
+
flows (list[ndarray]: Flows to be augmented. If the input is an
|
92 |
+
ndarray, it will be transformed to a list.
|
93 |
+
Dimension is (h, w, 2). Default: None.
|
94 |
+
return_status (bool): Return the status of flip and rotation.
|
95 |
+
Default: False.
|
96 |
+
|
97 |
+
Returns:
|
98 |
+
list[ndarray] | ndarray: Augmented images and flows. If returned
|
99 |
+
results only have one element, just return ndarray.
|
100 |
+
|
101 |
+
"""
|
102 |
+
hflip = hflip and random.random() < 0.5
|
103 |
+
vflip = rotation and random.random() < 0.5
|
104 |
+
rot90 = rotation and random.random() < 0.5
|
105 |
+
|
106 |
+
def _augment(img):
|
107 |
+
if hflip: # horizontal
|
108 |
+
cv2.flip(img, 1, img)
|
109 |
+
if vflip: # vertical
|
110 |
+
cv2.flip(img, 0, img)
|
111 |
+
if rot90:
|
112 |
+
img = img.transpose(1, 0, 2)
|
113 |
+
return img
|
114 |
+
|
115 |
+
def _augment_flow(flow):
|
116 |
+
if hflip: # horizontal
|
117 |
+
cv2.flip(flow, 1, flow)
|
118 |
+
flow[:, :, 0] *= -1
|
119 |
+
if vflip: # vertical
|
120 |
+
cv2.flip(flow, 0, flow)
|
121 |
+
flow[:, :, 1] *= -1
|
122 |
+
if rot90:
|
123 |
+
flow = flow.transpose(1, 0, 2)
|
124 |
+
flow = flow[:, :, [1, 0]]
|
125 |
+
return flow
|
126 |
+
|
127 |
+
if not isinstance(imgs, list):
|
128 |
+
imgs = [imgs]
|
129 |
+
imgs = [_augment(img) for img in imgs]
|
130 |
+
if len(imgs) == 1:
|
131 |
+
imgs = imgs[0]
|
132 |
+
|
133 |
+
if flows is not None:
|
134 |
+
if not isinstance(flows, list):
|
135 |
+
flows = [flows]
|
136 |
+
flows = [_augment_flow(flow) for flow in flows]
|
137 |
+
if len(flows) == 1:
|
138 |
+
flows = flows[0]
|
139 |
+
return imgs, flows
|
140 |
+
else:
|
141 |
+
if return_status:
|
142 |
+
return imgs, (hflip, vflip, rot90)
|
143 |
+
else:
|
144 |
+
return imgs
|
145 |
+
|
146 |
+
|
147 |
+
def img_rotate(img, angle, center=None, scale=1.0):
|
148 |
+
"""Rotate image.
|
149 |
+
|
150 |
+
Args:
|
151 |
+
img (ndarray): Image to be rotated.
|
152 |
+
angle (float): Rotation angle in degrees. Positive values mean
|
153 |
+
counter-clockwise rotation.
|
154 |
+
center (tuple[int]): Rotation center. If the center is None,
|
155 |
+
initialize it as the center of the image. Default: None.
|
156 |
+
scale (float): Isotropic scale factor. Default: 1.0.
|
157 |
+
"""
|
158 |
+
(h, w) = img.shape[:2]
|
159 |
+
|
160 |
+
if center is None:
|
161 |
+
center = (w // 2, h // 2)
|
162 |
+
|
163 |
+
matrix = cv2.getRotationMatrix2D(center, angle, scale)
|
164 |
+
rotated_img = cv2.warpAffine(img, matrix, (w, h))
|
165 |
+
return rotated_img
|
post_process/inswapper/CodeFormer/CodeFormer/basicsr/losses/__init__.py
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from copy import deepcopy
|
2 |
+
|
3 |
+
from basicsr.utils import get_root_logger
|
4 |
+
from basicsr.utils.registry import LOSS_REGISTRY
|
5 |
+
from .losses import (CharbonnierLoss, GANLoss, L1Loss, MSELoss, PerceptualLoss, WeightedTVLoss, g_path_regularize,
|
6 |
+
gradient_penalty_loss, r1_penalty)
|
7 |
+
|
8 |
+
__all__ = [
|
9 |
+
'L1Loss', 'MSELoss', 'CharbonnierLoss', 'WeightedTVLoss', 'PerceptualLoss', 'GANLoss', 'gradient_penalty_loss',
|
10 |
+
'r1_penalty', 'g_path_regularize'
|
11 |
+
]
|
12 |
+
|
13 |
+
|
14 |
+
def build_loss(opt):
|
15 |
+
"""Build loss from options.
|
16 |
+
|
17 |
+
Args:
|
18 |
+
opt (dict): Configuration. It must constain:
|
19 |
+
type (str): Model type.
|
20 |
+
"""
|
21 |
+
opt = deepcopy(opt)
|
22 |
+
loss_type = opt.pop('type')
|
23 |
+
loss = LOSS_REGISTRY.get(loss_type)(**opt)
|
24 |
+
logger = get_root_logger()
|
25 |
+
logger.info(f'Loss [{loss.__class__.__name__}] is created.')
|
26 |
+
return loss
|
post_process/inswapper/CodeFormer/CodeFormer/basicsr/losses/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (1.05 kB). View file
|
|
post_process/inswapper/CodeFormer/CodeFormer/basicsr/losses/__pycache__/loss_util.cpython-310.pyc
ADDED
Binary file (2.71 kB). View file
|
|
post_process/inswapper/CodeFormer/CodeFormer/basicsr/losses/__pycache__/losses.cpython-310.pyc
ADDED
Binary file (14.6 kB). View file
|
|
post_process/inswapper/CodeFormer/CodeFormer/basicsr/losses/loss_util.py
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import functools
|
2 |
+
from torch.nn import functional as F
|
3 |
+
|
4 |
+
|
5 |
+
def reduce_loss(loss, reduction):
|
6 |
+
"""Reduce loss as specified.
|
7 |
+
|
8 |
+
Args:
|
9 |
+
loss (Tensor): Elementwise loss tensor.
|
10 |
+
reduction (str): Options are 'none', 'mean' and 'sum'.
|
11 |
+
|
12 |
+
Returns:
|
13 |
+
Tensor: Reduced loss tensor.
|
14 |
+
"""
|
15 |
+
reduction_enum = F._Reduction.get_enum(reduction)
|
16 |
+
# none: 0, elementwise_mean:1, sum: 2
|
17 |
+
if reduction_enum == 0:
|
18 |
+
return loss
|
19 |
+
elif reduction_enum == 1:
|
20 |
+
return loss.mean()
|
21 |
+
else:
|
22 |
+
return loss.sum()
|
23 |
+
|
24 |
+
|
25 |
+
def weight_reduce_loss(loss, weight=None, reduction='mean'):
|
26 |
+
"""Apply element-wise weight and reduce loss.
|
27 |
+
|
28 |
+
Args:
|
29 |
+
loss (Tensor): Element-wise loss.
|
30 |
+
weight (Tensor): Element-wise weights. Default: None.
|
31 |
+
reduction (str): Same as built-in losses of PyTorch. Options are
|
32 |
+
'none', 'mean' and 'sum'. Default: 'mean'.
|
33 |
+
|
34 |
+
Returns:
|
35 |
+
Tensor: Loss values.
|
36 |
+
"""
|
37 |
+
# if weight is specified, apply element-wise weight
|
38 |
+
if weight is not None:
|
39 |
+
assert weight.dim() == loss.dim()
|
40 |
+
assert weight.size(1) == 1 or weight.size(1) == loss.size(1)
|
41 |
+
loss = loss * weight
|
42 |
+
|
43 |
+
# if weight is not specified or reduction is sum, just reduce the loss
|
44 |
+
if weight is None or reduction == 'sum':
|
45 |
+
loss = reduce_loss(loss, reduction)
|
46 |
+
# if reduction is mean, then compute mean over weight region
|
47 |
+
elif reduction == 'mean':
|
48 |
+
if weight.size(1) > 1:
|
49 |
+
weight = weight.sum()
|
50 |
+
else:
|
51 |
+
weight = weight.sum() * loss.size(1)
|
52 |
+
loss = loss.sum() / weight
|
53 |
+
|
54 |
+
return loss
|
55 |
+
|
56 |
+
|
57 |
+
def weighted_loss(loss_func):
|
58 |
+
"""Create a weighted version of a given loss function.
|
59 |
+
|
60 |
+
To use this decorator, the loss function must have the signature like
|
61 |
+
`loss_func(pred, target, **kwargs)`. The function only needs to compute
|
62 |
+
element-wise loss without any reduction. This decorator will add weight
|
63 |
+
and reduction arguments to the function. The decorated function will have
|
64 |
+
the signature like `loss_func(pred, target, weight=None, reduction='mean',
|
65 |
+
**kwargs)`.
|
66 |
+
|
67 |
+
:Example:
|
68 |
+
|
69 |
+
>>> import torch
|
70 |
+
>>> @weighted_loss
|
71 |
+
>>> def l1_loss(pred, target):
|
72 |
+
>>> return (pred - target).abs()
|
73 |
+
|
74 |
+
>>> pred = torch.Tensor([0, 2, 3])
|
75 |
+
>>> target = torch.Tensor([1, 1, 1])
|
76 |
+
>>> weight = torch.Tensor([1, 0, 1])
|
77 |
+
|
78 |
+
>>> l1_loss(pred, target)
|
79 |
+
tensor(1.3333)
|
80 |
+
>>> l1_loss(pred, target, weight)
|
81 |
+
tensor(1.5000)
|
82 |
+
>>> l1_loss(pred, target, reduction='none')
|
83 |
+
tensor([1., 1., 2.])
|
84 |
+
>>> l1_loss(pred, target, weight, reduction='sum')
|
85 |
+
tensor(3.)
|
86 |
+
"""
|
87 |
+
|
88 |
+
@functools.wraps(loss_func)
|
89 |
+
def wrapper(pred, target, weight=None, reduction='mean', **kwargs):
|
90 |
+
# get element-wise loss
|
91 |
+
loss = loss_func(pred, target, **kwargs)
|
92 |
+
loss = weight_reduce_loss(loss, weight, reduction)
|
93 |
+
return loss
|
94 |
+
|
95 |
+
return wrapper
|
post_process/inswapper/CodeFormer/CodeFormer/basicsr/losses/losses.py
ADDED
@@ -0,0 +1,455 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import lpips
|
3 |
+
import torch
|
4 |
+
from torch import autograd as autograd
|
5 |
+
from torch import nn as nn
|
6 |
+
from torch.nn import functional as F
|
7 |
+
|
8 |
+
from basicsr.archs.vgg_arch import VGGFeatureExtractor
|
9 |
+
from basicsr.utils.registry import LOSS_REGISTRY
|
10 |
+
from .loss_util import weighted_loss
|
11 |
+
|
12 |
+
_reduction_modes = ['none', 'mean', 'sum']
|
13 |
+
|
14 |
+
|
15 |
+
@weighted_loss
|
16 |
+
def l1_loss(pred, target):
|
17 |
+
return F.l1_loss(pred, target, reduction='none')
|
18 |
+
|
19 |
+
|
20 |
+
@weighted_loss
|
21 |
+
def mse_loss(pred, target):
|
22 |
+
return F.mse_loss(pred, target, reduction='none')
|
23 |
+
|
24 |
+
|
25 |
+
@weighted_loss
|
26 |
+
def charbonnier_loss(pred, target, eps=1e-12):
|
27 |
+
return torch.sqrt((pred - target)**2 + eps)
|
28 |
+
|
29 |
+
|
30 |
+
@LOSS_REGISTRY.register()
|
31 |
+
class L1Loss(nn.Module):
|
32 |
+
"""L1 (mean absolute error, MAE) loss.
|
33 |
+
|
34 |
+
Args:
|
35 |
+
loss_weight (float): Loss weight for L1 loss. Default: 1.0.
|
36 |
+
reduction (str): Specifies the reduction to apply to the output.
|
37 |
+
Supported choices are 'none' | 'mean' | 'sum'. Default: 'mean'.
|
38 |
+
"""
|
39 |
+
|
40 |
+
def __init__(self, loss_weight=1.0, reduction='mean'):
|
41 |
+
super(L1Loss, self).__init__()
|
42 |
+
if reduction not in ['none', 'mean', 'sum']:
|
43 |
+
raise ValueError(f'Unsupported reduction mode: {reduction}. ' f'Supported ones are: {_reduction_modes}')
|
44 |
+
|
45 |
+
self.loss_weight = loss_weight
|
46 |
+
self.reduction = reduction
|
47 |
+
|
48 |
+
def forward(self, pred, target, weight=None, **kwargs):
|
49 |
+
"""
|
50 |
+
Args:
|
51 |
+
pred (Tensor): of shape (N, C, H, W). Predicted tensor.
|
52 |
+
target (Tensor): of shape (N, C, H, W). Ground truth tensor.
|
53 |
+
weight (Tensor, optional): of shape (N, C, H, W). Element-wise
|
54 |
+
weights. Default: None.
|
55 |
+
"""
|
56 |
+
return self.loss_weight * l1_loss(pred, target, weight, reduction=self.reduction)
|
57 |
+
|
58 |
+
|
59 |
+
@LOSS_REGISTRY.register()
|
60 |
+
class MSELoss(nn.Module):
|
61 |
+
"""MSE (L2) loss.
|
62 |
+
|
63 |
+
Args:
|
64 |
+
loss_weight (float): Loss weight for MSE loss. Default: 1.0.
|
65 |
+
reduction (str): Specifies the reduction to apply to the output.
|
66 |
+
Supported choices are 'none' | 'mean' | 'sum'. Default: 'mean'.
|
67 |
+
"""
|
68 |
+
|
69 |
+
def __init__(self, loss_weight=1.0, reduction='mean'):
|
70 |
+
super(MSELoss, self).__init__()
|
71 |
+
if reduction not in ['none', 'mean', 'sum']:
|
72 |
+
raise ValueError(f'Unsupported reduction mode: {reduction}. ' f'Supported ones are: {_reduction_modes}')
|
73 |
+
|
74 |
+
self.loss_weight = loss_weight
|
75 |
+
self.reduction = reduction
|
76 |
+
|
77 |
+
def forward(self, pred, target, weight=None, **kwargs):
|
78 |
+
"""
|
79 |
+
Args:
|
80 |
+
pred (Tensor): of shape (N, C, H, W). Predicted tensor.
|
81 |
+
target (Tensor): of shape (N, C, H, W). Ground truth tensor.
|
82 |
+
weight (Tensor, optional): of shape (N, C, H, W). Element-wise
|
83 |
+
weights. Default: None.
|
84 |
+
"""
|
85 |
+
return self.loss_weight * mse_loss(pred, target, weight, reduction=self.reduction)
|
86 |
+
|
87 |
+
|
88 |
+
@LOSS_REGISTRY.register()
|
89 |
+
class CharbonnierLoss(nn.Module):
|
90 |
+
"""Charbonnier loss (one variant of Robust L1Loss, a differentiable
|
91 |
+
variant of L1Loss).
|
92 |
+
|
93 |
+
Described in "Deep Laplacian Pyramid Networks for Fast and Accurate
|
94 |
+
Super-Resolution".
|
95 |
+
|
96 |
+
Args:
|
97 |
+
loss_weight (float): Loss weight for L1 loss. Default: 1.0.
|
98 |
+
reduction (str): Specifies the reduction to apply to the output.
|
99 |
+
Supported choices are 'none' | 'mean' | 'sum'. Default: 'mean'.
|
100 |
+
eps (float): A value used to control the curvature near zero.
|
101 |
+
Default: 1e-12.
|
102 |
+
"""
|
103 |
+
|
104 |
+
def __init__(self, loss_weight=1.0, reduction='mean', eps=1e-12):
|
105 |
+
super(CharbonnierLoss, self).__init__()
|
106 |
+
if reduction not in ['none', 'mean', 'sum']:
|
107 |
+
raise ValueError(f'Unsupported reduction mode: {reduction}. ' f'Supported ones are: {_reduction_modes}')
|
108 |
+
|
109 |
+
self.loss_weight = loss_weight
|
110 |
+
self.reduction = reduction
|
111 |
+
self.eps = eps
|
112 |
+
|
113 |
+
def forward(self, pred, target, weight=None, **kwargs):
|
114 |
+
"""
|
115 |
+
Args:
|
116 |
+
pred (Tensor): of shape (N, C, H, W). Predicted tensor.
|
117 |
+
target (Tensor): of shape (N, C, H, W). Ground truth tensor.
|
118 |
+
weight (Tensor, optional): of shape (N, C, H, W). Element-wise
|
119 |
+
weights. Default: None.
|
120 |
+
"""
|
121 |
+
return self.loss_weight * charbonnier_loss(pred, target, weight, eps=self.eps, reduction=self.reduction)
|
122 |
+
|
123 |
+
|
124 |
+
@LOSS_REGISTRY.register()
|
125 |
+
class WeightedTVLoss(L1Loss):
|
126 |
+
"""Weighted TV loss.
|
127 |
+
|
128 |
+
Args:
|
129 |
+
loss_weight (float): Loss weight. Default: 1.0.
|
130 |
+
"""
|
131 |
+
|
132 |
+
def __init__(self, loss_weight=1.0):
|
133 |
+
super(WeightedTVLoss, self).__init__(loss_weight=loss_weight)
|
134 |
+
|
135 |
+
def forward(self, pred, weight=None):
|
136 |
+
y_diff = super(WeightedTVLoss, self).forward(pred[:, :, :-1, :], pred[:, :, 1:, :], weight=weight[:, :, :-1, :])
|
137 |
+
x_diff = super(WeightedTVLoss, self).forward(pred[:, :, :, :-1], pred[:, :, :, 1:], weight=weight[:, :, :, :-1])
|
138 |
+
|
139 |
+
loss = x_diff + y_diff
|
140 |
+
|
141 |
+
return loss
|
142 |
+
|
143 |
+
|
144 |
+
@LOSS_REGISTRY.register()
|
145 |
+
class PerceptualLoss(nn.Module):
|
146 |
+
"""Perceptual loss with commonly used style loss.
|
147 |
+
|
148 |
+
Args:
|
149 |
+
layer_weights (dict): The weight for each layer of vgg feature.
|
150 |
+
Here is an example: {'conv5_4': 1.}, which means the conv5_4
|
151 |
+
feature layer (before relu5_4) will be extracted with weight
|
152 |
+
1.0 in calculting losses.
|
153 |
+
vgg_type (str): The type of vgg network used as feature extractor.
|
154 |
+
Default: 'vgg19'.
|
155 |
+
use_input_norm (bool): If True, normalize the input image in vgg.
|
156 |
+
Default: True.
|
157 |
+
range_norm (bool): If True, norm images with range [-1, 1] to [0, 1].
|
158 |
+
Default: False.
|
159 |
+
perceptual_weight (float): If `perceptual_weight > 0`, the perceptual
|
160 |
+
loss will be calculated and the loss will multiplied by the
|
161 |
+
weight. Default: 1.0.
|
162 |
+
style_weight (float): If `style_weight > 0`, the style loss will be
|
163 |
+
calculated and the loss will multiplied by the weight.
|
164 |
+
Default: 0.
|
165 |
+
criterion (str): Criterion used for perceptual loss. Default: 'l1'.
|
166 |
+
"""
|
167 |
+
|
168 |
+
def __init__(self,
|
169 |
+
layer_weights,
|
170 |
+
vgg_type='vgg19',
|
171 |
+
use_input_norm=True,
|
172 |
+
range_norm=False,
|
173 |
+
perceptual_weight=1.0,
|
174 |
+
style_weight=0.,
|
175 |
+
criterion='l1'):
|
176 |
+
super(PerceptualLoss, self).__init__()
|
177 |
+
self.perceptual_weight = perceptual_weight
|
178 |
+
self.style_weight = style_weight
|
179 |
+
self.layer_weights = layer_weights
|
180 |
+
self.vgg = VGGFeatureExtractor(
|
181 |
+
layer_name_list=list(layer_weights.keys()),
|
182 |
+
vgg_type=vgg_type,
|
183 |
+
use_input_norm=use_input_norm,
|
184 |
+
range_norm=range_norm)
|
185 |
+
|
186 |
+
self.criterion_type = criterion
|
187 |
+
if self.criterion_type == 'l1':
|
188 |
+
self.criterion = torch.nn.L1Loss()
|
189 |
+
elif self.criterion_type == 'l2':
|
190 |
+
self.criterion = torch.nn.L2loss()
|
191 |
+
elif self.criterion_type == 'mse':
|
192 |
+
self.criterion = torch.nn.MSELoss(reduction='mean')
|
193 |
+
elif self.criterion_type == 'fro':
|
194 |
+
self.criterion = None
|
195 |
+
else:
|
196 |
+
raise NotImplementedError(f'{criterion} criterion has not been supported.')
|
197 |
+
|
198 |
+
def forward(self, x, gt):
|
199 |
+
"""Forward function.
|
200 |
+
|
201 |
+
Args:
|
202 |
+
x (Tensor): Input tensor with shape (n, c, h, w).
|
203 |
+
gt (Tensor): Ground-truth tensor with shape (n, c, h, w).
|
204 |
+
|
205 |
+
Returns:
|
206 |
+
Tensor: Forward results.
|
207 |
+
"""
|
208 |
+
# extract vgg features
|
209 |
+
x_features = self.vgg(x)
|
210 |
+
gt_features = self.vgg(gt.detach())
|
211 |
+
|
212 |
+
# calculate perceptual loss
|
213 |
+
if self.perceptual_weight > 0:
|
214 |
+
percep_loss = 0
|
215 |
+
for k in x_features.keys():
|
216 |
+
if self.criterion_type == 'fro':
|
217 |
+
percep_loss += torch.norm(x_features[k] - gt_features[k], p='fro') * self.layer_weights[k]
|
218 |
+
else:
|
219 |
+
percep_loss += self.criterion(x_features[k], gt_features[k]) * self.layer_weights[k]
|
220 |
+
percep_loss *= self.perceptual_weight
|
221 |
+
else:
|
222 |
+
percep_loss = None
|
223 |
+
|
224 |
+
# calculate style loss
|
225 |
+
if self.style_weight > 0:
|
226 |
+
style_loss = 0
|
227 |
+
for k in x_features.keys():
|
228 |
+
if self.criterion_type == 'fro':
|
229 |
+
style_loss += torch.norm(
|
230 |
+
self._gram_mat(x_features[k]) - self._gram_mat(gt_features[k]), p='fro') * self.layer_weights[k]
|
231 |
+
else:
|
232 |
+
style_loss += self.criterion(self._gram_mat(x_features[k]), self._gram_mat(
|
233 |
+
gt_features[k])) * self.layer_weights[k]
|
234 |
+
style_loss *= self.style_weight
|
235 |
+
else:
|
236 |
+
style_loss = None
|
237 |
+
|
238 |
+
return percep_loss, style_loss
|
239 |
+
|
240 |
+
def _gram_mat(self, x):
|
241 |
+
"""Calculate Gram matrix.
|
242 |
+
|
243 |
+
Args:
|
244 |
+
x (torch.Tensor): Tensor with shape of (n, c, h, w).
|
245 |
+
|
246 |
+
Returns:
|
247 |
+
torch.Tensor: Gram matrix.
|
248 |
+
"""
|
249 |
+
n, c, h, w = x.size()
|
250 |
+
features = x.view(n, c, w * h)
|
251 |
+
features_t = features.transpose(1, 2)
|
252 |
+
gram = features.bmm(features_t) / (c * h * w)
|
253 |
+
return gram
|
254 |
+
|
255 |
+
|
256 |
+
@LOSS_REGISTRY.register()
|
257 |
+
class LPIPSLoss(nn.Module):
|
258 |
+
def __init__(self,
|
259 |
+
loss_weight=1.0,
|
260 |
+
use_input_norm=True,
|
261 |
+
range_norm=False,):
|
262 |
+
super(LPIPSLoss, self).__init__()
|
263 |
+
self.perceptual = lpips.LPIPS(net="vgg", spatial=False).eval()
|
264 |
+
self.loss_weight = loss_weight
|
265 |
+
self.use_input_norm = use_input_norm
|
266 |
+
self.range_norm = range_norm
|
267 |
+
|
268 |
+
if self.use_input_norm:
|
269 |
+
# the mean is for image with range [0, 1]
|
270 |
+
self.register_buffer('mean', torch.Tensor([0.485, 0.456, 0.406]).view(1, 3, 1, 1))
|
271 |
+
# the std is for image with range [0, 1]
|
272 |
+
self.register_buffer('std', torch.Tensor([0.229, 0.224, 0.225]).view(1, 3, 1, 1))
|
273 |
+
|
274 |
+
def forward(self, pred, target):
|
275 |
+
if self.range_norm:
|
276 |
+
pred = (pred + 1) / 2
|
277 |
+
target = (target + 1) / 2
|
278 |
+
if self.use_input_norm:
|
279 |
+
pred = (pred - self.mean) / self.std
|
280 |
+
target = (target - self.mean) / self.std
|
281 |
+
lpips_loss = self.perceptual(target.contiguous(), pred.contiguous())
|
282 |
+
return self.loss_weight * lpips_loss.mean()
|
283 |
+
|
284 |
+
|
285 |
+
@LOSS_REGISTRY.register()
|
286 |
+
class GANLoss(nn.Module):
|
287 |
+
"""Define GAN loss.
|
288 |
+
|
289 |
+
Args:
|
290 |
+
gan_type (str): Support 'vanilla', 'lsgan', 'wgan', 'hinge'.
|
291 |
+
real_label_val (float): The value for real label. Default: 1.0.
|
292 |
+
fake_label_val (float): The value for fake label. Default: 0.0.
|
293 |
+
loss_weight (float): Loss weight. Default: 1.0.
|
294 |
+
Note that loss_weight is only for generators; and it is always 1.0
|
295 |
+
for discriminators.
|
296 |
+
"""
|
297 |
+
|
298 |
+
def __init__(self, gan_type, real_label_val=1.0, fake_label_val=0.0, loss_weight=1.0):
|
299 |
+
super(GANLoss, self).__init__()
|
300 |
+
self.gan_type = gan_type
|
301 |
+
self.loss_weight = loss_weight
|
302 |
+
self.real_label_val = real_label_val
|
303 |
+
self.fake_label_val = fake_label_val
|
304 |
+
|
305 |
+
if self.gan_type == 'vanilla':
|
306 |
+
self.loss = nn.BCEWithLogitsLoss()
|
307 |
+
elif self.gan_type == 'lsgan':
|
308 |
+
self.loss = nn.MSELoss()
|
309 |
+
elif self.gan_type == 'wgan':
|
310 |
+
self.loss = self._wgan_loss
|
311 |
+
elif self.gan_type == 'wgan_softplus':
|
312 |
+
self.loss = self._wgan_softplus_loss
|
313 |
+
elif self.gan_type == 'hinge':
|
314 |
+
self.loss = nn.ReLU()
|
315 |
+
else:
|
316 |
+
raise NotImplementedError(f'GAN type {self.gan_type} is not implemented.')
|
317 |
+
|
318 |
+
def _wgan_loss(self, input, target):
|
319 |
+
"""wgan loss.
|
320 |
+
|
321 |
+
Args:
|
322 |
+
input (Tensor): Input tensor.
|
323 |
+
target (bool): Target label.
|
324 |
+
|
325 |
+
Returns:
|
326 |
+
Tensor: wgan loss.
|
327 |
+
"""
|
328 |
+
return -input.mean() if target else input.mean()
|
329 |
+
|
330 |
+
def _wgan_softplus_loss(self, input, target):
|
331 |
+
"""wgan loss with soft plus. softplus is a smooth approximation to the
|
332 |
+
ReLU function.
|
333 |
+
|
334 |
+
In StyleGAN2, it is called:
|
335 |
+
Logistic loss for discriminator;
|
336 |
+
Non-saturating loss for generator.
|
337 |
+
|
338 |
+
Args:
|
339 |
+
input (Tensor): Input tensor.
|
340 |
+
target (bool): Target label.
|
341 |
+
|
342 |
+
Returns:
|
343 |
+
Tensor: wgan loss.
|
344 |
+
"""
|
345 |
+
return F.softplus(-input).mean() if target else F.softplus(input).mean()
|
346 |
+
|
347 |
+
def get_target_label(self, input, target_is_real):
|
348 |
+
"""Get target label.
|
349 |
+
|
350 |
+
Args:
|
351 |
+
input (Tensor): Input tensor.
|
352 |
+
target_is_real (bool): Whether the target is real or fake.
|
353 |
+
|
354 |
+
Returns:
|
355 |
+
(bool | Tensor): Target tensor. Return bool for wgan, otherwise,
|
356 |
+
return Tensor.
|
357 |
+
"""
|
358 |
+
|
359 |
+
if self.gan_type in ['wgan', 'wgan_softplus']:
|
360 |
+
return target_is_real
|
361 |
+
target_val = (self.real_label_val if target_is_real else self.fake_label_val)
|
362 |
+
return input.new_ones(input.size()) * target_val
|
363 |
+
|
364 |
+
def forward(self, input, target_is_real, is_disc=False):
|
365 |
+
"""
|
366 |
+
Args:
|
367 |
+
input (Tensor): The input for the loss module, i.e., the network
|
368 |
+
prediction.
|
369 |
+
target_is_real (bool): Whether the targe is real or fake.
|
370 |
+
is_disc (bool): Whether the loss for discriminators or not.
|
371 |
+
Default: False.
|
372 |
+
|
373 |
+
Returns:
|
374 |
+
Tensor: GAN loss value.
|
375 |
+
"""
|
376 |
+
if self.gan_type == 'hinge':
|
377 |
+
if is_disc: # for discriminators in hinge-gan
|
378 |
+
input = -input if target_is_real else input
|
379 |
+
loss = self.loss(1 + input).mean()
|
380 |
+
else: # for generators in hinge-gan
|
381 |
+
loss = -input.mean()
|
382 |
+
else: # other gan types
|
383 |
+
target_label = self.get_target_label(input, target_is_real)
|
384 |
+
loss = self.loss(input, target_label)
|
385 |
+
|
386 |
+
# loss_weight is always 1.0 for discriminators
|
387 |
+
return loss if is_disc else loss * self.loss_weight
|
388 |
+
|
389 |
+
|
390 |
+
def r1_penalty(real_pred, real_img):
|
391 |
+
"""R1 regularization for discriminator. The core idea is to
|
392 |
+
penalize the gradient on real data alone: when the
|
393 |
+
generator distribution produces the true data distribution
|
394 |
+
and the discriminator is equal to 0 on the data manifold, the
|
395 |
+
gradient penalty ensures that the discriminator cannot create
|
396 |
+
a non-zero gradient orthogonal to the data manifold without
|
397 |
+
suffering a loss in the GAN game.
|
398 |
+
|
399 |
+
Ref:
|
400 |
+
Eq. 9 in Which training methods for GANs do actually converge.
|
401 |
+
"""
|
402 |
+
grad_real = autograd.grad(outputs=real_pred.sum(), inputs=real_img, create_graph=True)[0]
|
403 |
+
grad_penalty = grad_real.pow(2).view(grad_real.shape[0], -1).sum(1).mean()
|
404 |
+
return grad_penalty
|
405 |
+
|
406 |
+
|
407 |
+
def g_path_regularize(fake_img, latents, mean_path_length, decay=0.01):
|
408 |
+
noise = torch.randn_like(fake_img) / math.sqrt(fake_img.shape[2] * fake_img.shape[3])
|
409 |
+
grad = autograd.grad(outputs=(fake_img * noise).sum(), inputs=latents, create_graph=True)[0]
|
410 |
+
path_lengths = torch.sqrt(grad.pow(2).sum(2).mean(1))
|
411 |
+
|
412 |
+
path_mean = mean_path_length + decay * (path_lengths.mean() - mean_path_length)
|
413 |
+
|
414 |
+
path_penalty = (path_lengths - path_mean).pow(2).mean()
|
415 |
+
|
416 |
+
return path_penalty, path_lengths.detach().mean(), path_mean.detach()
|
417 |
+
|
418 |
+
|
419 |
+
def gradient_penalty_loss(discriminator, real_data, fake_data, weight=None):
|
420 |
+
"""Calculate gradient penalty for wgan-gp.
|
421 |
+
|
422 |
+
Args:
|
423 |
+
discriminator (nn.Module): Network for the discriminator.
|
424 |
+
real_data (Tensor): Real input data.
|
425 |
+
fake_data (Tensor): Fake input data.
|
426 |
+
weight (Tensor): Weight tensor. Default: None.
|
427 |
+
|
428 |
+
Returns:
|
429 |
+
Tensor: A tensor for gradient penalty.
|
430 |
+
"""
|
431 |
+
|
432 |
+
batch_size = real_data.size(0)
|
433 |
+
alpha = real_data.new_tensor(torch.rand(batch_size, 1, 1, 1))
|
434 |
+
|
435 |
+
# interpolate between real_data and fake_data
|
436 |
+
interpolates = alpha * real_data + (1. - alpha) * fake_data
|
437 |
+
interpolates = autograd.Variable(interpolates, requires_grad=True)
|
438 |
+
|
439 |
+
disc_interpolates = discriminator(interpolates)
|
440 |
+
gradients = autograd.grad(
|
441 |
+
outputs=disc_interpolates,
|
442 |
+
inputs=interpolates,
|
443 |
+
grad_outputs=torch.ones_like(disc_interpolates),
|
444 |
+
create_graph=True,
|
445 |
+
retain_graph=True,
|
446 |
+
only_inputs=True)[0]
|
447 |
+
|
448 |
+
if weight is not None:
|
449 |
+
gradients = gradients * weight
|
450 |
+
|
451 |
+
gradients_penalty = ((gradients.norm(2, dim=1) - 1)**2).mean()
|
452 |
+
if weight is not None:
|
453 |
+
gradients_penalty /= torch.mean(weight)
|
454 |
+
|
455 |
+
return gradients_penalty
|