Initial commit
Browse files- README.md +37 -0
- a2c-PandaReachDense-v2.zip +3 -0
- a2c-PandaReachDense-v2/_stable_baselines3_version +1 -0
- a2c-PandaReachDense-v2/data +94 -0
- a2c-PandaReachDense-v2/policy.optimizer.pth +3 -0
- a2c-PandaReachDense-v2/policy.pth +3 -0
- a2c-PandaReachDense-v2/pytorch_variables.pth +3 -0
- a2c-PandaReachDense-v2/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- PandaReachDense-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: PandaReachDense-v2
|
16 |
+
type: PandaReachDense-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -5.34 +/- 1.43
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **PandaReachDense-v2**
|
25 |
+
This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-PandaReachDense-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d07f7b2e1493e20f4098b1540555b81190efeb76630db78d813939514f2f44e5
|
3 |
+
size 108088
|
a2c-PandaReachDense-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.8.0a2
|
a2c-PandaReachDense-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fbc97248dc0>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x7fbc972416c0>"
|
10 |
+
},
|
11 |
+
"verbose": 1,
|
12 |
+
"policy_kwargs": {
|
13 |
+
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
|
15 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
16 |
+
"optimizer_kwargs": {
|
17 |
+
"alpha": 0.99,
|
18 |
+
"eps": 1e-05,
|
19 |
+
"weight_decay": 0
|
20 |
+
}
|
21 |
+
},
|
22 |
+
"observation_space": {
|
23 |
+
":type:": "<class 'gym.spaces.dict.Dict'>",
|
24 |
+
":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu",
|
25 |
+
"spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
|
26 |
+
"_shape": null,
|
27 |
+
"dtype": null,
|
28 |
+
"_np_random": null
|
29 |
+
},
|
30 |
+
"action_space": {
|
31 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
32 |
+
":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==",
|
33 |
+
"dtype": "float32",
|
34 |
+
"_shape": [
|
35 |
+
3
|
36 |
+
],
|
37 |
+
"low": "[-1. -1. -1.]",
|
38 |
+
"high": "[1. 1. 1.]",
|
39 |
+
"bounded_below": "[ True True True]",
|
40 |
+
"bounded_above": "[ True True True]",
|
41 |
+
"_np_random": null
|
42 |
+
},
|
43 |
+
"n_envs": 4,
|
44 |
+
"num_timesteps": 1000000,
|
45 |
+
"_total_timesteps": 1000000,
|
46 |
+
"_num_timesteps_at_start": 0,
|
47 |
+
"seed": null,
|
48 |
+
"action_noise": null,
|
49 |
+
"start_time": 1677955862513441935,
|
50 |
+
"learning_rate": 0.0007,
|
51 |
+
"tensorboard_log": null,
|
52 |
+
"lr_schedule": {
|
53 |
+
":type:": "<class 'function'>",
|
54 |
+
":serialized:": "gAWV2QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMUy9ob21lL25lby9taW5pY29uZGEzL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgkMCBAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxTL2hvbWUvbmVvL21pbmljb25kYTMvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP0bwBo24useFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
55 |
+
},
|
56 |
+
"_last_obs": {
|
57 |
+
":type:": "<class 'collections.OrderedDict'>",
|
58 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAANmoDP32zqD19Y+E+NmoDP32zqD19Y+E+NmoDP32zqD19Y+E+NmoDP32zqD19Y+E+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAALh5vvP1Lvz+7+Li/d59gP5nwnT+Yn9K+YveiP2qyC753xTE+Raksv95ixT/zscy/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAA2agM/fbOoPX1j4T4H4bU7foqmu4h/eTs2agM/fbOoPX1j4T4H4bU7foqmu4h/eTs2agM/fbOoPX1j4T4H4bU7foqmu4h/eTs2agM/fbOoPX1j4T4H4bU7foqmu4h/eTuUaA5LBEsGhpRoEnSUUpR1Lg==",
|
59 |
+
"achieved_goal": "[[0.5133394 0.0823736 0.44021216]\n [0.5133394 0.0823736 0.44021216]\n [0.5133394 0.0823736 0.44021216]\n [0.5133394 0.0823736 0.44021216]]",
|
60 |
+
"desired_goal": "[[-0.0145946 1.4945065 -1.4450907 ]\n [ 0.87743324 1.233905 -0.41137385]\n [ 1.2731745 -0.13642278 0.17360483]\n [-0.67445785 1.5420797 -1.5991806 ]]",
|
61 |
+
"observation": "[[ 0.5133394 0.0823736 0.44021216 0.00555051 -0.00508243 0.00380704]\n [ 0.5133394 0.0823736 0.44021216 0.00555051 -0.00508243 0.00380704]\n [ 0.5133394 0.0823736 0.44021216 0.00555051 -0.00508243 0.00380704]\n [ 0.5133394 0.0823736 0.44021216 0.00555051 -0.00508243 0.00380704]]"
|
62 |
+
},
|
63 |
+
"_last_episode_starts": {
|
64 |
+
":type:": "<class 'numpy.ndarray'>",
|
65 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
66 |
+
},
|
67 |
+
"_last_original_obs": {
|
68 |
+
":type:": "<class 'collections.OrderedDict'>",
|
69 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAARKUNvsejgr3LcX4+SlUSPu15KjxJWF8+WKIFPvVQgD3Q81g+XL95O5EfEr1Wn8o9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
70 |
+
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
71 |
+
"desired_goal": "[[-0.13832575 -0.06378894 0.24848096]\n [ 0.14290348 0.01040505 0.21811022]\n [ 0.1305021 0.06265441 0.21186757]\n [ 0.00381084 -0.03567464 0.09893672]]",
|
72 |
+
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
73 |
+
},
|
74 |
+
"_episode_num": 0,
|
75 |
+
"use_sde": false,
|
76 |
+
"sde_sample_freq": -1,
|
77 |
+
"_current_progress_remaining": 0.0,
|
78 |
+
"ep_info_buffer": {
|
79 |
+
":type:": "<class 'collections.deque'>",
|
80 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI/MOWHk21C8CUhpRSlIwBbJRLMowBdJRHQK+UgC4jKPp1fZQoaAZoCWgPQwix9+KL9hgRwJSGlFKUaBVLMmgWR0Cvk0kal1r7dX2UKGgGaAloD0MIV81zRL6rGcCUhpRSlGgVSzJoFkdAr5H/pKSPl3V9lChoBmgJaA9DCEfLgR5qCx3AlIaUUpRoFUsyaBZHQK+Q5wazeGh1fZQoaAZoCWgPQwhrC89LxdYewJSGlFKUaBVLMmgWR0CvlgRzJZGKdX2UKGgGaAloD0MIC5dV2AxwFcCUhpRSlGgVSzJoFkdAr5TOBMBZIXV9lChoBmgJaA9DCBzO/GoOGCbAlIaUUpRoFUsyaBZHQK+ThS7Xg+B1fZQoaAZoCWgPQwi+FB40u/4dwJSGlFKUaBVLMmgWR0CvkmzpX6qLdX2UKGgGaAloD0MIC2MLQQ46GcCUhpRSlGgVSzJoFkdAr5edwR5C4XV9lChoBmgJaA9DCPZ9OEiIUhDAlIaUUpRoFUsyaBZHQK+WZrPdEb51fZQoaAZoCWgPQwgH0O/7N+8SwJSGlFKUaBVLMmgWR0CvlR05U96kdX2UKGgGaAloD0MIbw7Xag8bDsCUhpRSlGgVSzJoFkdAr5QEzhxYJXV9lChoBmgJaA9DCDYGnRA62BXAlIaUUpRoFUsyaBZHQK+ZCeZG8VZ1fZQoaAZoCWgPQwhu4A7UKQ8IwJSGlFKUaBVLMmgWR0Cvl9LofSx8dX2UKGgGaAloD0MIn1bRH5r5CcCUhpRSlGgVSzJoFkdAr5aJZdOZcHV9lChoBmgJaA9DCLkzEwznOhfAlIaUUpRoFUsyaBZHQK+VcNS619h1fZQoaAZoCWgPQwjYfcfw2CcjwJSGlFKUaBVLMmgWR0CvmnQeNkvsdX2UKGgGaAloD0MIZhGKraDZGMCUhpRSlGgVSzJoFkdAr5k9HDrJKnV9lChoBmgJaA9DCJ3aGaa2hBXAlIaUUpRoFUsyaBZHQK+X878vVVh1fZQoaAZoCWgPQwh4mPbN/WUQwJSGlFKUaBVLMmgWR0Cvltsju8brdX2UKGgGaAloD0MIG9ZUFoW9FcCUhpRSlGgVSzJoFkdAr5vn1BdD6XV9lChoBmgJaA9DCDTVk/lHnxfAlIaUUpRoFUsyaBZHQK+asV45cTt1fZQoaAZoCWgPQwj678Frl3YSwJSGlFKUaBVLMmgWR0CvmWiIDYAbdX2UKGgGaAloD0MIJzCd1m2AEsCUhpRSlGgVSzJoFkdAr5hQjSofjnV9lChoBmgJaA9DCOcBLPLr9xTAlIaUUpRoFUsyaBZHQK+dS+7Dl5p1fZQoaAZoCWgPQwgJNUOqKE4hwJSGlFKUaBVLMmgWR0CvnBTisGPgdX2UKGgGaAloD0MIxTnq6LgaC8CUhpRSlGgVSzJoFkdAr5rLcdo373V9lChoBmgJaA9DCG77HvXX6w3AlIaUUpRoFUsyaBZHQK+ZsxLTQVt1fZQoaAZoCWgPQwiyKsJNRvUGwJSGlFKUaBVLMmgWR0CvnsYR28qXdX2UKGgGaAloD0MI4+DSMef5C8CUhpRSlGgVSzJoFkdAr52Pjhky13V9lChoBmgJaA9DCDunWaDdIQ/AlIaUUpRoFUsyaBZHQK+cRp0OmSB1fZQoaAZoCWgPQwioqzsW26QPwJSGlFKUaBVLMmgWR0Cvmy6Zx7zDdX2UKGgGaAloD0MILCy4H/AwIsCUhpRSlGgVSzJoFkdAr6CLiwSrYHV9lChoBmgJaA9DCCcz3lZ6bRLAlIaUUpRoFUsyaBZHQK+fVHsC1Z11fZQoaAZoCWgPQwgz38FPHLAUwJSGlFKUaBVLMmgWR0CvngsTWXkYdX2UKGgGaAloD0MIzQTDuYZZE8CUhpRSlGgVSzJoFkdAr5zymGdqcnV9lChoBmgJaA9DCMdl3NRAkwXAlIaUUpRoFUsyaBZHQK+iG3HaN+91fZQoaAZoCWgPQwiobcMoCD4OwJSGlFKUaBVLMmgWR0CvoOR59mYjdX2UKGgGaAloD0MI7GexFMlHGsCUhpRSlGgVSzJoFkdAr5+bLjghr3V9lChoBmgJaA9DCC9QUmABnBPAlIaUUpRoFUsyaBZHQK+egqI7/4t1fZQoaAZoCWgPQwhfRNsxdVcLwJSGlFKUaBVLMmgWR0Cvo5ZvLowFdX2UKGgGaAloD0MITS8xluk3FsCUhpRSlGgVSzJoFkdAr6JfmA9V3nV9lChoBmgJaA9DCCFcAYV6+gjAlIaUUpRoFUsyaBZHQK+hFnanJkp1fZQoaAZoCWgPQwhoIJbNHGITwJSGlFKUaBVLMmgWR0Cvn/4Dklu4dX2UKGgGaAloD0MIvaqzWmAPDcCUhpRSlGgVSzJoFkdAr6Uqbc45tHV9lChoBmgJaA9DCK4pkNlZ1ArAlIaUUpRoFUsyaBZHQK+j82Zy+6B1fZQoaAZoCWgPQwivCWmNQdcawJSGlFKUaBVLMmgWR0CvoqoaUA1fdX2UKGgGaAloD0MI5WN3gZJCCsCUhpRSlGgVSzJoFkdAr6GRmdy1eHV9lChoBmgJaA9DCJjArbt5qg/AlIaUUpRoFUsyaBZHQK+mfDO1OTJ1fZQoaAZoCWgPQwiwc9NmnCYfwJSGlFKUaBVLMmgWR0CvpUU1IiC8dX2UKGgGaAloD0MI4jsx68W4IsCUhpRSlGgVSzJoFkdAr6P74i5d4XV9lChoBmgJaA9DCH2utmJ/GRLAlIaUUpRoFUsyaBZHQK+i41VHWjJ1fZQoaAZoCWgPQwgIclDCTBsFwJSGlFKUaBVLMmgWR0Cvp9yV4X41dX2UKGgGaAloD0MIBeEKKNTTFsCUhpRSlGgVSzJoFkdAr6amObRWtHV9lChoBmgJaA9DCNL+B1irFgvAlIaUUpRoFUsyaBZHQK+lXUS7GvR1fZQoaAZoCWgPQwiKkSVzLK8ZwJSGlFKUaBVLMmgWR0CvpETy8SPEdX2UKGgGaAloD0MIoZ4+An+oF8CUhpRSlGgVSzJoFkdAr6k5PuXu3XV9lChoBmgJaA9DCLmoFhHFVBPAlIaUUpRoFUsyaBZHQK+oAlVtGd91fZQoaAZoCWgPQwhWRbjJqPIRwJSGlFKUaBVLMmgWR0CvprjtG/etdX2UKGgGaAloD0MIYhVvZB5JEMCUhpRSlGgVSzJoFkdAr6WgmE4//3V9lChoBmgJaA9DCLAcIQN5XiLAlIaUUpRoFUsyaBZHQK+qzoxpL291fZQoaAZoCWgPQwh2Gf7TDaQTwJSGlFKUaBVLMmgWR0CvqZfTspocdX2UKGgGaAloD0MIlba4xmfCGMCUhpRSlGgVSzJoFkdAr6hOjmCAc3V9lChoBmgJaA9DCP58W7BUryTAlIaUUpRoFUsyaBZHQK+nNgLqlgt1fZQoaAZoCWgPQwj4NCcvMiEGwJSGlFKUaBVLMmgWR0CvrChuwX67dX2UKGgGaAloD0MI/IwLB0KSFcCUhpRSlGgVSzJoFkdAr6rxakhzNnV9lChoBmgJaA9DCLyVJTrL7ArAlIaUUpRoFUsyaBZHQK+pp/DLr5Z1fZQoaAZoCWgPQwgu5Xyx94IewJSGlFKUaBVLMmgWR0CvqI9ZJTVEdX2UKGgGaAloD0MIUMJM27/CEcCUhpRSlGgVSzJoFkdAr63GANG3F3V9lChoBmgJaA9DCHtq9dVVkRjAlIaUUpRoFUsyaBZHQK+sj1RtP551fZQoaAZoCWgPQwg+zcmLTGATwJSGlFKUaBVLMmgWR0Cvq0Yz7/GVdX2UKGgGaAloD0MIRz6veOoRDMCUhpRSlGgVSzJoFkdAr6ouE7GNrHV9lChoBmgJaA9DCAQcQpWapSHAlIaUUpRoFUsyaBZHQK+vAPxQSBd1fZQoaAZoCWgPQwi0lCwnoWQWwJSGlFKUaBVLMmgWR0CvrcoXsPatdX2UKGgGaAloD0MILe3UXG5gEcCUhpRSlGgVSzJoFkdAr6yAvpQk5nV9lChoBmgJaA9DCA9HV+nuuhLAlIaUUpRoFUsyaBZHQK+raGrS3LF1fZQoaAZoCWgPQwjQtpp1xncQwJSGlFKUaBVLMmgWR0CvsIrUCq6wdX2UKGgGaAloD0MIJ9wr81a9HMCUhpRSlGgVSzJoFkdAr69T0lJHy3V9lChoBmgJaA9DCOaSqu0m2AnAlIaUUpRoFUsyaBZHQK+uClb/wRZ1fZQoaAZoCWgPQwip+pXOhzcRwJSGlFKUaBVLMmgWR0CvrPIJzDGcdX2UKGgGaAloD0MICyjU00dADsCUhpRSlGgVSzJoFkdAr7H13ljmS3V9lChoBmgJaA9DCD6T/fM0UB3AlIaUUpRoFUsyaBZHQK+wv0AcT8J1fZQoaAZoCWgPQwhn0xHAzVIYwJSGlFKUaBVLMmgWR0Cvr3Y6Oo5xdX2UKGgGaAloD0MIldbfEoAfFMCUhpRSlGgVSzJoFkdAr65d+LFXJnV9lChoBmgJaA9DCA0AVdy4JQnAlIaUUpRoFUsyaBZHQK+zW/Y8Md91fZQoaAZoCWgPQwhWD5iHTHkVwJSGlFKUaBVLMmgWR0CvsiV9F4LUdX2UKGgGaAloD0MIEsE4uHScEcCUhpRSlGgVSzJoFkdAr7Dcdq+JxnV9lChoBmgJaA9DCGUcI9kjNAfAlIaUUpRoFUsyaBZHQK+vxFqi48V1fZQoaAZoCWgPQwhsCfmgZ0MawJSGlFKUaBVLMmgWR0CvtMuT7l7udX2UKGgGaAloD0MIHHqLh/fsG8CUhpRSlGgVSzJoFkdAr7OUleF+NXV9lChoBmgJaA9DCKbtX1lpAhLAlIaUUpRoFUsyaBZHQK+ySz41xbV1fZQoaAZoCWgPQwhxqyAGujYJwJSGlFKUaBVLMmgWR0CvsTLHEMspdX2UKGgGaAloD0MI14aKcf6mDsCUhpRSlGgVSzJoFkdAr7ZeDL8rJHV9lChoBmgJaA9DCGeeXFMgoxDAlIaUUpRoFUsyaBZHQK+1Jw1BMSN1fZQoaAZoCWgPQwjEBgsnaY4SwJSGlFKUaBVLMmgWR0Cvs93kxREXdX2UKGgGaAloD0MIIGKDhZM0FcCUhpRSlGgVSzJoFkdAr7LFkhA4XHV9lChoBmgJaA9DCIC4q1eR0RLAlIaUUpRoFUsyaBZHQK+30mP5pJx1fZQoaAZoCWgPQwgpWrkXmJUXwJSGlFKUaBVLMmgWR0CvtpvLPldUdX2UKGgGaAloD0MIIsfWM4RjCsCUhpRSlGgVSzJoFkdAr7VSqU/wAnV9lChoBmgJaA9DCEQwDi4dsw/AlIaUUpRoFUsyaBZHQK+0OqJ/G2l1ZS4="
|
81 |
+
},
|
82 |
+
"ep_success_buffer": {
|
83 |
+
":type:": "<class 'collections.deque'>",
|
84 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
85 |
+
},
|
86 |
+
"_n_updates": 50000,
|
87 |
+
"n_steps": 5,
|
88 |
+
"gamma": 0.99,
|
89 |
+
"gae_lambda": 1.0,
|
90 |
+
"ent_coef": 0.0,
|
91 |
+
"vf_coef": 0.5,
|
92 |
+
"max_grad_norm": 0.5,
|
93 |
+
"normalize_advantage": false
|
94 |
+
}
|
a2c-PandaReachDense-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e40c32ac465dba1733cf0ce23a46031e0064cff9f9e83174de91163f24e171d6
|
3 |
+
size 44734
|
a2c-PandaReachDense-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:feda50710893f035d3e6e70605839c8e7c3e47e96e3ca3b9c9f741fca96fe3d4
|
3 |
+
size 46014
|
a2c-PandaReachDense-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-PandaReachDense-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.90.1-microsoft-standard-WSL2-x86_64-with-glibc2.35 # 1 SMP Fri Jan 27 02:56:13 UTC 2023
|
2 |
+
- Python: 3.10.8
|
3 |
+
- Stable-Baselines3: 1.8.0a2
|
4 |
+
- PyTorch: 1.13.1+cu117
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.24.2
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fbc97248dc0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fbc972416c0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1677955862513441935, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV2QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMUy9ob21lL25lby9taW5pY29uZGEzL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgkMCBAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxTL2hvbWUvbmVvL21pbmljb25kYTMvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP0bwBo24useFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAANmoDP32zqD19Y+E+NmoDP32zqD19Y+E+NmoDP32zqD19Y+E+NmoDP32zqD19Y+E+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAALh5vvP1Lvz+7+Li/d59gP5nwnT+Yn9K+YveiP2qyC753xTE+Raksv95ixT/zscy/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAA2agM/fbOoPX1j4T4H4bU7foqmu4h/eTs2agM/fbOoPX1j4T4H4bU7foqmu4h/eTs2agM/fbOoPX1j4T4H4bU7foqmu4h/eTs2agM/fbOoPX1j4T4H4bU7foqmu4h/eTuUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.5133394 0.0823736 0.44021216]\n [0.5133394 0.0823736 0.44021216]\n [0.5133394 0.0823736 0.44021216]\n [0.5133394 0.0823736 0.44021216]]", "desired_goal": "[[-0.0145946 1.4945065 -1.4450907 ]\n [ 0.87743324 1.233905 -0.41137385]\n [ 1.2731745 -0.13642278 0.17360483]\n [-0.67445785 1.5420797 -1.5991806 ]]", "observation": "[[ 0.5133394 0.0823736 0.44021216 0.00555051 -0.00508243 0.00380704]\n [ 0.5133394 0.0823736 0.44021216 0.00555051 -0.00508243 0.00380704]\n [ 0.5133394 0.0823736 0.44021216 0.00555051 -0.00508243 0.00380704]\n [ 0.5133394 0.0823736 0.44021216 0.00555051 -0.00508243 0.00380704]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAARKUNvsejgr3LcX4+SlUSPu15KjxJWF8+WKIFPvVQgD3Q81g+XL95O5EfEr1Wn8o9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.13832575 -0.06378894 0.24848096]\n [ 0.14290348 0.01040505 0.21811022]\n [ 0.1305021 0.06265441 0.21186757]\n [ 0.00381084 -0.03567464 0.09893672]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI/MOWHk21C8CUhpRSlIwBbJRLMowBdJRHQK+UgC4jKPp1fZQoaAZoCWgPQwix9+KL9hgRwJSGlFKUaBVLMmgWR0Cvk0kal1r7dX2UKGgGaAloD0MIV81zRL6rGcCUhpRSlGgVSzJoFkdAr5H/pKSPl3V9lChoBmgJaA9DCEfLgR5qCx3AlIaUUpRoFUsyaBZHQK+Q5wazeGh1fZQoaAZoCWgPQwhrC89LxdYewJSGlFKUaBVLMmgWR0CvlgRzJZGKdX2UKGgGaAloD0MIC5dV2AxwFcCUhpRSlGgVSzJoFkdAr5TOBMBZIXV9lChoBmgJaA9DCBzO/GoOGCbAlIaUUpRoFUsyaBZHQK+ThS7Xg+B1fZQoaAZoCWgPQwi+FB40u/4dwJSGlFKUaBVLMmgWR0CvkmzpX6qLdX2UKGgGaAloD0MIC2MLQQ46GcCUhpRSlGgVSzJoFkdAr5edwR5C4XV9lChoBmgJaA9DCPZ9OEiIUhDAlIaUUpRoFUsyaBZHQK+WZrPdEb51fZQoaAZoCWgPQwgH0O/7N+8SwJSGlFKUaBVLMmgWR0CvlR05U96kdX2UKGgGaAloD0MIbw7Xag8bDsCUhpRSlGgVSzJoFkdAr5QEzhxYJXV9lChoBmgJaA9DCDYGnRA62BXAlIaUUpRoFUsyaBZHQK+ZCeZG8VZ1fZQoaAZoCWgPQwhu4A7UKQ8IwJSGlFKUaBVLMmgWR0Cvl9LofSx8dX2UKGgGaAloD0MIn1bRH5r5CcCUhpRSlGgVSzJoFkdAr5aJZdOZcHV9lChoBmgJaA9DCLkzEwznOhfAlIaUUpRoFUsyaBZHQK+VcNS619h1fZQoaAZoCWgPQwjYfcfw2CcjwJSGlFKUaBVLMmgWR0CvmnQeNkvsdX2UKGgGaAloD0MIZhGKraDZGMCUhpRSlGgVSzJoFkdAr5k9HDrJKnV9lChoBmgJaA9DCJ3aGaa2hBXAlIaUUpRoFUsyaBZHQK+X878vVVh1fZQoaAZoCWgPQwh4mPbN/WUQwJSGlFKUaBVLMmgWR0Cvltsju8brdX2UKGgGaAloD0MIG9ZUFoW9FcCUhpRSlGgVSzJoFkdAr5vn1BdD6XV9lChoBmgJaA9DCDTVk/lHnxfAlIaUUpRoFUsyaBZHQK+asV45cTt1fZQoaAZoCWgPQwj678Frl3YSwJSGlFKUaBVLMmgWR0CvmWiIDYAbdX2UKGgGaAloD0MIJzCd1m2AEsCUhpRSlGgVSzJoFkdAr5hQjSofjnV9lChoBmgJaA9DCOcBLPLr9xTAlIaUUpRoFUsyaBZHQK+dS+7Dl5p1fZQoaAZoCWgPQwgJNUOqKE4hwJSGlFKUaBVLMmgWR0CvnBTisGPgdX2UKGgGaAloD0MIxTnq6LgaC8CUhpRSlGgVSzJoFkdAr5rLcdo373V9lChoBmgJaA9DCG77HvXX6w3AlIaUUpRoFUsyaBZHQK+ZsxLTQVt1fZQoaAZoCWgPQwiyKsJNRvUGwJSGlFKUaBVLMmgWR0CvnsYR28qXdX2UKGgGaAloD0MI4+DSMef5C8CUhpRSlGgVSzJoFkdAr52Pjhky13V9lChoBmgJaA9DCDunWaDdIQ/AlIaUUpRoFUsyaBZHQK+cRp0OmSB1fZQoaAZoCWgPQwioqzsW26QPwJSGlFKUaBVLMmgWR0Cvmy6Zx7zDdX2UKGgGaAloD0MILCy4H/AwIsCUhpRSlGgVSzJoFkdAr6CLiwSrYHV9lChoBmgJaA9DCCcz3lZ6bRLAlIaUUpRoFUsyaBZHQK+fVHsC1Z11fZQoaAZoCWgPQwgz38FPHLAUwJSGlFKUaBVLMmgWR0CvngsTWXkYdX2UKGgGaAloD0MIzQTDuYZZE8CUhpRSlGgVSzJoFkdAr5zymGdqcnV9lChoBmgJaA9DCMdl3NRAkwXAlIaUUpRoFUsyaBZHQK+iG3HaN+91fZQoaAZoCWgPQwiobcMoCD4OwJSGlFKUaBVLMmgWR0CvoOR59mYjdX2UKGgGaAloD0MI7GexFMlHGsCUhpRSlGgVSzJoFkdAr5+bLjghr3V9lChoBmgJaA9DCC9QUmABnBPAlIaUUpRoFUsyaBZHQK+egqI7/4t1fZQoaAZoCWgPQwhfRNsxdVcLwJSGlFKUaBVLMmgWR0Cvo5ZvLowFdX2UKGgGaAloD0MITS8xluk3FsCUhpRSlGgVSzJoFkdAr6JfmA9V3nV9lChoBmgJaA9DCCFcAYV6+gjAlIaUUpRoFUsyaBZHQK+hFnanJkp1fZQoaAZoCWgPQwhoIJbNHGITwJSGlFKUaBVLMmgWR0Cvn/4Dklu4dX2UKGgGaAloD0MIvaqzWmAPDcCUhpRSlGgVSzJoFkdAr6Uqbc45tHV9lChoBmgJaA9DCK4pkNlZ1ArAlIaUUpRoFUsyaBZHQK+j82Zy+6B1fZQoaAZoCWgPQwivCWmNQdcawJSGlFKUaBVLMmgWR0CvoqoaUA1fdX2UKGgGaAloD0MI5WN3gZJCCsCUhpRSlGgVSzJoFkdAr6GRmdy1eHV9lChoBmgJaA9DCJjArbt5qg/AlIaUUpRoFUsyaBZHQK+mfDO1OTJ1fZQoaAZoCWgPQwiwc9NmnCYfwJSGlFKUaBVLMmgWR0CvpUU1IiC8dX2UKGgGaAloD0MI4jsx68W4IsCUhpRSlGgVSzJoFkdAr6P74i5d4XV9lChoBmgJaA9DCH2utmJ/GRLAlIaUUpRoFUsyaBZHQK+i41VHWjJ1fZQoaAZoCWgPQwgIclDCTBsFwJSGlFKUaBVLMmgWR0Cvp9yV4X41dX2UKGgGaAloD0MIBeEKKNTTFsCUhpRSlGgVSzJoFkdAr6amObRWtHV9lChoBmgJaA9DCNL+B1irFgvAlIaUUpRoFUsyaBZHQK+lXUS7GvR1fZQoaAZoCWgPQwiKkSVzLK8ZwJSGlFKUaBVLMmgWR0CvpETy8SPEdX2UKGgGaAloD0MIoZ4+An+oF8CUhpRSlGgVSzJoFkdAr6k5PuXu3XV9lChoBmgJaA9DCLmoFhHFVBPAlIaUUpRoFUsyaBZHQK+oAlVtGd91fZQoaAZoCWgPQwhWRbjJqPIRwJSGlFKUaBVLMmgWR0CvprjtG/etdX2UKGgGaAloD0MIYhVvZB5JEMCUhpRSlGgVSzJoFkdAr6WgmE4//3V9lChoBmgJaA9DCLAcIQN5XiLAlIaUUpRoFUsyaBZHQK+qzoxpL291fZQoaAZoCWgPQwh2Gf7TDaQTwJSGlFKUaBVLMmgWR0CvqZfTspocdX2UKGgGaAloD0MIlba4xmfCGMCUhpRSlGgVSzJoFkdAr6hOjmCAc3V9lChoBmgJaA9DCP58W7BUryTAlIaUUpRoFUsyaBZHQK+nNgLqlgt1fZQoaAZoCWgPQwj4NCcvMiEGwJSGlFKUaBVLMmgWR0CvrChuwX67dX2UKGgGaAloD0MI/IwLB0KSFcCUhpRSlGgVSzJoFkdAr6rxakhzNnV9lChoBmgJaA9DCLyVJTrL7ArAlIaUUpRoFUsyaBZHQK+pp/DLr5Z1fZQoaAZoCWgPQwgu5Xyx94IewJSGlFKUaBVLMmgWR0CvqI9ZJTVEdX2UKGgGaAloD0MIUMJM27/CEcCUhpRSlGgVSzJoFkdAr63GANG3F3V9lChoBmgJaA9DCHtq9dVVkRjAlIaUUpRoFUsyaBZHQK+sj1RtP551fZQoaAZoCWgPQwg+zcmLTGATwJSGlFKUaBVLMmgWR0Cvq0Yz7/GVdX2UKGgGaAloD0MIRz6veOoRDMCUhpRSlGgVSzJoFkdAr6ouE7GNrHV9lChoBmgJaA9DCAQcQpWapSHAlIaUUpRoFUsyaBZHQK+vAPxQSBd1fZQoaAZoCWgPQwi0lCwnoWQWwJSGlFKUaBVLMmgWR0CvrcoXsPatdX2UKGgGaAloD0MILe3UXG5gEcCUhpRSlGgVSzJoFkdAr6yAvpQk5nV9lChoBmgJaA9DCA9HV+nuuhLAlIaUUpRoFUsyaBZHQK+raGrS3LF1fZQoaAZoCWgPQwjQtpp1xncQwJSGlFKUaBVLMmgWR0CvsIrUCq6wdX2UKGgGaAloD0MIJ9wr81a9HMCUhpRSlGgVSzJoFkdAr69T0lJHy3V9lChoBmgJaA9DCOaSqu0m2AnAlIaUUpRoFUsyaBZHQK+uClb/wRZ1fZQoaAZoCWgPQwip+pXOhzcRwJSGlFKUaBVLMmgWR0CvrPIJzDGcdX2UKGgGaAloD0MICyjU00dADsCUhpRSlGgVSzJoFkdAr7H13ljmS3V9lChoBmgJaA9DCD6T/fM0UB3AlIaUUpRoFUsyaBZHQK+wv0AcT8J1fZQoaAZoCWgPQwhn0xHAzVIYwJSGlFKUaBVLMmgWR0Cvr3Y6Oo5xdX2UKGgGaAloD0MIldbfEoAfFMCUhpRSlGgVSzJoFkdAr65d+LFXJnV9lChoBmgJaA9DCA0AVdy4JQnAlIaUUpRoFUsyaBZHQK+zW/Y8Md91fZQoaAZoCWgPQwhWD5iHTHkVwJSGlFKUaBVLMmgWR0CvsiV9F4LUdX2UKGgGaAloD0MIEsE4uHScEcCUhpRSlGgVSzJoFkdAr7Dcdq+JxnV9lChoBmgJaA9DCGUcI9kjNAfAlIaUUpRoFUsyaBZHQK+vxFqi48V1fZQoaAZoCWgPQwhsCfmgZ0MawJSGlFKUaBVLMmgWR0CvtMuT7l7udX2UKGgGaAloD0MIHHqLh/fsG8CUhpRSlGgVSzJoFkdAr7OUleF+NXV9lChoBmgJaA9DCKbtX1lpAhLAlIaUUpRoFUsyaBZHQK+ySz41xbV1fZQoaAZoCWgPQwhxqyAGujYJwJSGlFKUaBVLMmgWR0CvsTLHEMspdX2UKGgGaAloD0MI14aKcf6mDsCUhpRSlGgVSzJoFkdAr7ZeDL8rJHV9lChoBmgJaA9DCGeeXFMgoxDAlIaUUpRoFUsyaBZHQK+1Jw1BMSN1fZQoaAZoCWgPQwjEBgsnaY4SwJSGlFKUaBVLMmgWR0Cvs93kxREXdX2UKGgGaAloD0MIIGKDhZM0FcCUhpRSlGgVSzJoFkdAr7LFkhA4XHV9lChoBmgJaA9DCIC4q1eR0RLAlIaUUpRoFUsyaBZHQK+30mP5pJx1fZQoaAZoCWgPQwgpWrkXmJUXwJSGlFKUaBVLMmgWR0CvtpvLPldUdX2UKGgGaAloD0MIIsfWM4RjCsCUhpRSlGgVSzJoFkdAr7VSqU/wAnV9lChoBmgJaA9DCEQwDi4dsw/AlIaUUpRoFUsyaBZHQK+0OqJ/G2l1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.15.90.1-microsoft-standard-WSL2-x86_64-with-glibc2.35 # 1 SMP Fri Jan 27 02:56:13 UTC 2023", "Python": "3.10.8", "Stable-Baselines3": "1.8.0a2", "PyTorch": "1.13.1+cu117", "GPU Enabled": "True", "Numpy": "1.24.2", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (870 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -5.341528418473899, "std_reward": 1.4318826742044592, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-05T11:36:13.324206"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:af4d5ff9267f50ffb7586fdba55b5d1951406f665575c570067327da8a2772d6
|
3 |
+
size 3117
|