raaedk commited on
Commit
c3276f2
1 Parent(s): 68c2f3e

Model card auto-generated by SimpleTuner

Browse files
Files changed (1) hide show
  1. README.md +168 -0
README.md ADDED
@@ -0,0 +1,168 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: other
3
+ base_model: "stabilityai/stable-diffusion-3.5-large"
4
+ tags:
5
+ - sd3
6
+ - sd3-diffusers
7
+ - text-to-image
8
+ - diffusers
9
+ - simpletuner
10
+ - safe-for-work
11
+ - lora
12
+ - template:sd-lora
13
+ - lycoris
14
+ inference: true
15
+ widget:
16
+ - text: 'unconditional (blank prompt)'
17
+ parameters:
18
+ negative_prompt: 'blurry, cropped, ugly'
19
+ output:
20
+ url: ./assets/image_0_0.png
21
+ - text: 'ps2 graphics, liminal, hotel lobby, videogame screenshot'
22
+ parameters:
23
+ negative_prompt: 'blurry, cropped, ugly'
24
+ output:
25
+ url: ./assets/image_1_0.png
26
+ ---
27
+
28
+ # subliminal_large
29
+
30
+ This is a LyCORIS adapter derived from [stabilityai/stable-diffusion-3.5-large](https://huggingface.co/stabilityai/stable-diffusion-3.5-large).
31
+
32
+
33
+ The main validation prompt used during training was:
34
+
35
+
36
+
37
+ ```
38
+ ps2 graphics, liminal, hotel lobby, videogame screenshot
39
+ ```
40
+
41
+ ## Validation settings
42
+ - CFG: `5.0`
43
+ - CFG Rescale: `0.0`
44
+ - Steps: `20`
45
+ - Sampler: `None`
46
+ - Seed: `42`
47
+ - Resolution: `1024x1024`
48
+
49
+ Note: The validation settings are not necessarily the same as the [training settings](#training-settings).
50
+
51
+ You can find some example images in the following gallery:
52
+
53
+
54
+ <Gallery />
55
+
56
+ The text encoder **was not** trained.
57
+ You may reuse the base model text encoder for inference.
58
+
59
+
60
+ ## Training settings
61
+
62
+ - Training epochs: 0
63
+ - Training steps: 500
64
+ - Learning rate: 0.0001
65
+ - Max grad norm: 0.01
66
+ - Effective batch size: 1
67
+ - Micro-batch size: 1
68
+ - Gradient accumulation steps: 1
69
+ - Number of GPUs: 1
70
+ - Prediction type: flow-matching
71
+ - Rescaled betas zero SNR: False
72
+ - Optimizer: adamw_bf16
73
+ - Precision: Pure BF16
74
+ - Quantised: Yes: int8-quanto
75
+ - Xformers: Not used
76
+ - LyCORIS Config:
77
+ ```json
78
+ {
79
+ "algo": "lora",
80
+ "multiplier": 1.0,
81
+ "linear_dim": 64,
82
+ "linear_alpha": 32,
83
+ "apply_preset": {
84
+ "target_module": [
85
+ "Attention",
86
+ "FeedForward"
87
+ ],
88
+ "module_algo_map": {
89
+ "Attention": {
90
+ "factor": 16
91
+ },
92
+ "FeedForward": {
93
+ "factor": 8
94
+ }
95
+ }
96
+ }
97
+ }
98
+ ```
99
+
100
+ ## Datasets
101
+
102
+ ### ps2_subliminal-512
103
+ - Repeats: 10
104
+ - Total number of images: 55
105
+ - Total number of aspect buckets: 2
106
+ - Resolution: 0.262144 megapixels
107
+ - Cropped: False
108
+ - Crop style: None
109
+ - Crop aspect: None
110
+ - Used for regularisation data: No
111
+ ### ps2_subliminal-1024
112
+ - Repeats: 10
113
+ - Total number of images: 55
114
+ - Total number of aspect buckets: 2
115
+ - Resolution: 1.048576 megapixels
116
+ - Cropped: False
117
+ - Crop style: None
118
+ - Crop aspect: None
119
+ - Used for regularisation data: No
120
+ ### ps2_subliminal-512-crop
121
+ - Repeats: 10
122
+ - Total number of images: 55
123
+ - Total number of aspect buckets: 1
124
+ - Resolution: 0.262144 megapixels
125
+ - Cropped: True
126
+ - Crop style: random
127
+ - Crop aspect: square
128
+ - Used for regularisation data: No
129
+ ### ps2_subliminal-1024-crop
130
+ - Repeats: 10
131
+ - Total number of images: 55
132
+ - Total number of aspect buckets: 1
133
+ - Resolution: 1.048576 megapixels
134
+ - Cropped: True
135
+ - Crop style: random
136
+ - Crop aspect: square
137
+ - Used for regularisation data: No
138
+
139
+
140
+ ## Inference
141
+
142
+
143
+ ```python
144
+ import torch
145
+ from diffusers import DiffusionPipeline
146
+ from lycoris import create_lycoris_from_weights
147
+
148
+ model_id = 'stabilityai/stable-diffusion-3.5-large'
149
+ adapter_id = 'pytorch_lora_weights.safetensors' # you will have to download this manually
150
+ lora_scale = 1.0
151
+ wrapper, _ = create_lycoris_from_weights(lora_scale, adapter_id, pipeline.transformer)
152
+ wrapper.merge_to()
153
+
154
+ prompt = "ps2 graphics, liminal, hotel lobby, videogame screenshot"
155
+ negative_prompt = 'blurry, cropped, ugly'
156
+ pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu')
157
+ image = pipeline(
158
+ prompt=prompt,
159
+ negative_prompt=negative_prompt,
160
+ num_inference_steps=20,
161
+ generator=torch.Generator(device='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu').manual_seed(1641421826),
162
+ width=1024,
163
+ height=1024,
164
+ guidance_scale=5.0,
165
+ ).images[0]
166
+ image.save("output.png", format="PNG")
167
+ ```
168
+