--- license: apache-2.0 language: - zh - en pipeline_tag: question-answering --- # Chinese-Alpaca-Plus-13B-GPTQ This is GPTQ format quantised 4bit models of [Yiming Cui's Chinese-LLaMA-Alpaca 13B](https://github.com/ymcui/Chinese-LLaMA-Alpaca). It is the result of quantising to 4bit using [GPTQ-for-LLaMa](https://github.com/qwopqwop200/GPTQ-for-LLaMa). ## Model Details ### Model Description - **Developed by:** [ymcui (Yiming Cui)](https://github.com/ymcui) - **Shared by:** Known Rabbit - **Language(s) (NLP):** Chinese, English - **License:** Apache 2.0 - **Finetuned from model:** LLaMA The original Github project: [ymcui/Chinese-LLaMA-Alpaca: 中文LLaMA&Alpaca大语言模型+本地CPU/GPU部署 (Chinese LLaMA & Alpaca LLMs)](https://github.com/ymcui/Chinese-LLaMA-Alpaca) > In order to promote the open research of large models in the Chinese NLP community, this project open sourced the Chinese LLaMA model and the Alpaca large model with fine-tuned instructions. Based on the original LLaMA, these models expand the Chinese vocabulary and use Chinese data for secondary pre-training, which further improves the basic semantic understanding of Chinese. At the same time, the Chinese Alpaca model further uses Chinese instruction data for fine-tuning, which significantly improves the model's ability to understand and execute instructions. For details, please refer to the technical report (Cui, Yang, and Yao, 2023). ### Model Sources - **Repository:** https://github.com/ymcui/Chinese-LLaMA-Alpaca - **Paper:** [[2304.08177] Efficient and Effective Text Encoding for Chinese LLaMA and Alpaca](https://arxiv.org/abs/2304.08177) ## Uses ### Direct Use #### How to easily download and use this model in text-generation-webui Open the text-generation-webui UI as normal. 1. Click the **Model tab**. 2. Under **Download custom model or LoRA**, enter `rabitt/Chinese-Alpaca-Plus-13B-GPTQ`. 3. Click **Download**. 4. Wait until it says it's finished downloading. 5. Click the **Refresh** icon next to **Model** in the top left. 6. In the **Model drop-down**: choose the model you just downloaded, `Chinese-Alpaca-Plus-13B-GPTQ`. 7. If you see an error in the bottom right, ignore it - it's temporary. 8. Fill out the `GPTQ parameters` on the right: `Bits = 4`, `Groupsize = 128`, `model_type = Llama` 9. Click **Save settings for this model** in the top right. 10. Click **Reload the Model** in the top right. 11. Once it says it's loaded, click the **Text Generation tab** and enter a prompt! ## Training Details ### Training Procedure 1. Download models from the following links * Original LLaMA: https://github.com/facebookresearch/llama/pull/73 * Chinese-LLaMA-Plus-13B * [ziqingyang/chinese-llama-plus-lora-13b · Hugging Face](https://huggingface.co/ziqingyang/chinese-llama-plus-lora-13b) * [chinese_llama_plus_lora_13b.zip_免费高速下载|百度网盘-分享无限制](https://pan.baidu.com/s/1VGpNlrLx5zHuNzLOcTG-xw?pwd=8cvd) * Chinese-Alpaca-Plus-13B * [ziqingyang/chinese-alpaca-plus-lora-13b · Hugging Face](https://huggingface.co/ziqingyang/chinese-alpaca-plus-lora-13b) * [chinese_alpaca_plus_lora_13b.zip_免费高速下载|百度网盘-分享无限制](https://pan.baidu.com/s/1Mew4EjBlejWBBB6_WW6vig?pwd=mf5w) 2. Convert LLaMA to HuggingFace (HF) format with `convert_llama_weights_to_hf.py` ```bash wget https://github.com/huggingface/transformers/raw/main/src/transformers/models/llama/convert_llama_weights_to_hf.py PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python \ python convert_llama_weights_to_hf.py \ --input_dir ./llama \ --model_size 13B \ --output_dir ./llama-13b-hf ``` 3. Merge `Chinese-LLaMA-Plus-13B` and `Chinese-Alpaca-Plus-13B` into LLaMA with `merge_llama_with_chinese_lora.py` ```bash wget https://github.com/ymcui/Chinese-LLaMA-Alpaca/raw/main/scripts/merge_llama_with_chinese_lora.py python merge_llama_with_chinese_lora.py \ --base_model ./llama-13b-hf \ --lora_model ./Chinese-LLaMA-Plus-LoRA-13B,./Chinese-Alpaca-Plus-LoRA-13B \ --output_type huggingface \ --output_dir ./Chinese-Alpaca-Plus-13B ``` 4. Quantise the model with `GPTQ-for-LLaMa` ```bash mkdir -p Chinese-Alpaca-Plus-13B-GPTQ git clone https://github.com/qwopqwop200/GPTQ-for-LLaMa.git cd GPTQ-for-LLaMa # export CUDA_VISIBLE_DEVICES=0 python llama.py ../Chinese-Alpaca-Plus-13B c4 --wbits 4 --true-sequential --act-order --groupsize 128 --save_safetensors ../Chinese-Alpaca-Plus-13B-GPTQ/Chinese-Alpaca-Plus-13B-GPTQ-4bit-128g.safetensors ``` ## Citation **BibTeX:** ```tex @article{chinese-llama-alpaca, title={Efficient and Effective Text Encoding for Chinese LLaMA and Alpaca}, author={Cui, Yiming and Yang, Ziqing and Yao, Xin}, journal={arXiv preprint arXiv:2304.08177}, url={https://arxiv.org/abs/2304.08177}, year={2023} } ```