File size: 1,711 Bytes
ca62d7f
 
 
 
 
 
 
 
 
 
 
 
1d7d54e
ca62d7f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1ac1ce8
ca62d7f
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
import torch
from torch import Tensor
from transformers import AutoTokenizer, AutoModel
from typing import List
import os

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')


class PreTrainedPipeline():
    def __init__(self, path=""):
        # load the optimized model
        self.model_path = os.path.join(path, '.')
        self.tokenizer = AutoTokenizer.from_pretrained(self.model_path)
        self.model = AutoModel.from_pretrained(self.model_path)
        self.model.eval()
        self.model = self.model.to(device)

    def __call__(self, inputs: str) -> List[float]:
        """
        Args:
            data (:obj:):
                includes the input data and the parameters for the inference.
        Return:
            A :obj:`dict`:. The object returned should be a dict like {"feature_vector": [0.6331314444541931,0.8802216053009033,...,-0.7866355180740356,]} containing :
                - "feature_vector": A list of floats corresponding to the image embedding.
        """

        batch_dict = self.tokenizer([inputs], max_length=512,
                                    padding=True, truncation=True, return_tensors='pt')
        with torch.no_grad():
            outputs = self.model(**batch_dict)
            embeddings = self.average_pool(outputs.last_hidden_state,
                                           batch_dict['attention_mask'])
        return embeddings.cpu().numpy().tolist()

    def average_pool(self,  last_hidden_states: Tensor, attention_mask: Tensor) -> Tensor:
        last_hidden = last_hidden_states.masked_fill(
            ~attention_mask[..., None].bool(), 0.0)
        return last_hidden.sum(dim=1) / attention_mask.sum(dim=1)[..., None]