English
medical
brain-data
mri
File size: 19,796 Bytes
0556c0e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
#!/usr/bin/env python3

"""
train_brain2vec.py

Trains a 3D VAE-based Brain2Vec model using MONAI. This script implements 
autoencoder training with adversarial loss (via a patch discriminator),
a perceptual loss, and KL divergence regularization for robust latent 
representations. 

Example usage:
    python train_brain2vec.py \
        --dataset_csv inputs.csv \
        --cache_dir ./ae_cache \
        --output_dir ./ae_output \
        --n_epochs 10
"""

import os
os.environ["PYTORCH_WEIGHTS_ONLY"] = "False"
from typing import Optional, Union
import pandas as pd
import argparse
import numpy as np
import warnings
import torch
import torch.nn as nn
from torch import Tensor
from torch.optim.optimizer import Optimizer
from torch.nn import L1Loss
from torch.utils.data import DataLoader
from torch.amp import autocast
from torch.amp import GradScaler
from generative.networks.nets import (
    AutoencoderKL, 
    PatchDiscriminator,
)
from generative.losses import PerceptualLoss, PatchAdversarialLoss
from monai.data import Dataset, PersistentDataset
from monai.transforms.transform import Transform
from monai import transforms
from monai.utils import set_determinism
from monai.data.meta_tensor import MetaTensor
import torch.serialization
from numpy.core.multiarray import _reconstruct
from numpy import ndarray, dtype
torch.serialization.add_safe_globals([_reconstruct])
torch.serialization.add_safe_globals([MetaTensor])
torch.serialization.add_safe_globals([ndarray])
torch.serialization.add_safe_globals([dtype])
from tqdm import tqdm
import matplotlib.pyplot as plt
from torch.utils.tensorboard import SummaryWriter

# voxel resolution
RESOLUTION = 2                              

# shape of the MNI152 (1mm^3) template
INPUT_SHAPE_1mm = (182, 218, 182)   

# resampling the MNI152 to (1.5mm^3)
INPUT_SHAPE_1p5mm = (122, 146, 122)   

# Adjusting the dimensions to be divisible by 8 (2^3 where 3 are the downsampling layers of the AE)
#INPUT_SHAPE_AE = (120, 144, 120)
INPUT_SHAPE_AE = (80, 96, 80)

# Latent shape of the autoencoder 
LATENT_SHAPE_AE = (1, 10, 12, 10)


def load_if(checkpoints_path: Optional[str], network: nn.Module) -> nn.Module:
    """
    Load pretrained weights if available.

    Args:
        checkpoints_path (Optional[str]): path of the checkpoints
        network (nn.Module): the neural network to initialize 

    Returns:
        nn.Module: the initialized neural network
    """
    if checkpoints_path is not None:
        assert os.path.exists(checkpoints_path), 'Invalid path'
        network.load_state_dict(torch.load(checkpoints_path))
    return network


def init_autoencoder(checkpoints_path: Optional[str] = None) -> nn.Module:
    """
    Load the KL autoencoder (pretrained if `checkpoints_path` points to previous params).

    Args:
        checkpoints_path (Optional[str], optional): path of the checkpoints. Defaults to None.

    Returns:
        nn.Module: the KL autoencoder
    """
    autoencoder = AutoencoderKL(spatial_dims=3, 
                                in_channels=1, 
                                out_channels=1, 
                                latent_channels=1, #3,
                                num_channels=(64, 128, 256, 512),
                                num_res_blocks=2, 
                                norm_num_groups=32,
                                norm_eps=1e-06,
                                attention_levels=(False, False, False, False), 
                                with_decoder_nonlocal_attn=False, 
                                with_encoder_nonlocal_attn=False)
    return load_if(checkpoints_path, autoencoder)


def init_patch_discriminator(checkpoints_path: Optional[str] = None) -> nn.Module:
    """
    Load the patch discriminator (pretrained if `checkpoints_path` points to previous params).

    Args:
        checkpoints_path (Optional[str], optional): path of the checkpoints. Defaults to None.

    Returns:
        nn.Module: the patch discriminator
    """
    patch_discriminator = PatchDiscriminator(spatial_dims=3, 
                                             num_layers_d=3, 
                                             num_channels=32, 
                                             in_channels=1, 
                                             out_channels=1)
    return load_if(checkpoints_path, patch_discriminator)


class KLDivergenceLoss:
    """
    A class for computing the Kullback-Leibler divergence loss.
    """
    
    def __call__(self, z_mu: Tensor, z_sigma: Tensor) -> Tensor:
        """
        Computes the KL divergence loss for the given parameters.

        Args:
            z_mu (Tensor):  The mean of the distribution.
            z_sigma (Tensor): The standard deviation of the distribution.

        Returns:
            Tensor: The computed KL divergence loss, averaged over the batch size.
        """

        kl_loss = 0.5 * torch.sum(z_mu.pow(2) + z_sigma.pow(2) - torch.log(z_sigma.pow(2)) - 1, dim=[1, 2, 3, 4])
        return torch.sum(kl_loss) / kl_loss.shape[0]


class GradientAccumulation:
    """
    Implements gradient accumulation to facilitate training with larger 
    effective batch sizes than what can be physically accommodated in memory.
    """

    def __init__(self,
                 actual_batch_size: int, 
                 expect_batch_size: int,
                 loader_len: int,
                 optimizer: Optimizer, 
                 grad_scaler: Optional[GradScaler] = None) -> None:
        """
        Initializes the GradientAccumulation instance with the necessary parameters for 
        managing gradient accumulation.

        Args:
            actual_batch_size (int): The size of the mini-batches actually used in training.
            expect_batch_size (int): The desired (effective) batch size to simulate through gradient accumulation.
            loader_len (int): The length of the data loader, representing the total number of mini-batches.
            optimizer (Optimizer): The optimizer used for performing optimization steps.
            grad_scaler (Optional[GradScaler], optional): A GradScaler for mixed precision training. Defaults to None.
        
        Raises:
            AssertionError: If `expect_batch_size` is not divisible by `actual_batch_size`.
        """

        assert expect_batch_size % actual_batch_size == 0, \
            'expect_batch_size must be divisible by actual_batch_size'
        self.actual_batch_size = actual_batch_size
        self.expect_batch_size = expect_batch_size
        self.loader_len = loader_len
        self.optimizer = optimizer
        self.grad_scaler = grad_scaler

        # if the expected batch size is N=KM, and the actual batch size
        # is M, then we need to accumulate gradient from N / M = K optimization steps. 
        self.steps_until_update = expect_batch_size / actual_batch_size

    def step(self, loss: Tensor, step: int) -> None:
        """
        Performs a backward pass for the given loss and potentially executes an optimization 
        step if the conditions for gradient accumulation are met. The optimization step is taken 
        only after a specified number of steps (defined by the expected batch size) or at the end 
        of the dataset.

        Args:
            loss (Tensor): The loss value for the current forward pass.
            step (int): The current step (mini-batch index) within the epoch.
        """
        loss = loss / self.expect_batch_size
        
        if self.grad_scaler is not None:
            self.grad_scaler.scale(loss).backward()
        else:
            loss.backward()        
        if (step + 1) % self.steps_until_update == 0 or (step + 1) == self.loader_len:
            if self.grad_scaler is not None:
                self.grad_scaler.step(self.optimizer)
                self.grad_scaler.update()
            else:
                self.optimizer.step()
            self.optimizer.zero_grad(set_to_none=True)


class AverageLoss:
    """
    Utility class to track losses
    and metrics during training.
    """

    def __init__(self):
        self.losses_accumulator = {}
    
    def put(self, loss_key:str, loss_value:Union[int,float]) -> None:
        """
        Store value

        Args:
            loss_key (str): Metric name
            loss_value (int | float): Metric value to store
        """
        if loss_key not in self.losses_accumulator:
            self.losses_accumulator[loss_key] = []
        self.losses_accumulator[loss_key].append(loss_value)
    
    def pop_avg(self, loss_key:str) -> float:
        """
        Average the stored values of a given metric

        Args:
            loss_key (str): Metric name

        Returns:
            float: average of the stored values
        """
        if loss_key not in self.losses_accumulator:
            return None
        losses = self.losses_accumulator[loss_key]
        self.losses_accumulator[loss_key] = []
        return sum(losses) / len(losses)
    
    def to_tensorboard(self, writer: SummaryWriter, step: int):
        """
        Logs the average value of all the metrics stored 
        into Tensorboard.

        Args:
            writer (SummaryWriter): Tensorboard writer
            step (int): Tensorboard logging global step 
        """
        for metric_key in self.losses_accumulator.keys():
            writer.add_scalar(metric_key, self.pop_avg(metric_key), step)


def get_dataset_from_pd(df: pd.DataFrame, transforms_fn: Transform, cache_dir: Optional[str]) -> Union[Dataset,PersistentDataset]: 
    """
    If `cache_dir` is defined, returns a `monai.data.PersistenDataset`. 
    Otherwise, returns a simple `monai.data.Dataset`.

    Args:
        df (pd.DataFrame): Dataframe describing each image in the longitudinal dataset.
        transforms_fn (Transform): Set of transformations
        cache_dir (Optional[str]): Cache directory (ensure enough storage is available)

    Returns:
        Dataset|PersistentDataset: The dataset
    """
    assert cache_dir is None or os.path.exists(cache_dir), 'Invalid cache directory path'
    data = df.to_dict(orient='records')
    return Dataset(data=data, transform=transforms_fn) if cache_dir is None \
        else PersistentDataset(data=data, transform=transforms_fn, cache_dir=cache_dir)


def tb_display_reconstruction(writer, step, image, recon):
    """
    Display reconstruction in TensorBoard during AE training.
    """
    plt.style.use('dark_background')
    _, ax = plt.subplots(ncols=3, nrows=2, figsize=(7, 5))
    for _ax in ax.flatten(): _ax.set_axis_off()

    if len(image.shape) == 4: image = image.squeeze(0) 
    if len(recon.shape) == 4: recon = recon.squeeze(0)

    ax[0, 0].set_title('original image', color='cyan')
    ax[0, 0].imshow(image[image.shape[0] // 2, :, :], cmap='gray')
    ax[0, 1].imshow(image[:, image.shape[1] // 2, :], cmap='gray')
    ax[0, 2].imshow(image[:, :, image.shape[2] // 2], cmap='gray')

    ax[1, 0].set_title('reconstructed image', color='magenta')
    ax[1, 0].imshow(recon[recon.shape[0] // 2, :, :], cmap='gray')
    ax[1, 1].imshow(recon[:, recon.shape[1] // 2, :], cmap='gray')
    ax[1, 2].imshow(recon[:, :, recon.shape[2] // 2], cmap='gray')

    plt.tight_layout()
    writer.add_figure('Reconstruction', plt.gcf(), global_step=step)


def set_environment(seed: int = 0) -> None:
    """
    Set deterministic behavior for reproducibility.

    Args:
        seed (int, optional): Seed value. Defaults to 0.
    """
    set_determinism(seed)


def train(
    dataset_csv: str,
    cache_dir: str,
    output_dir: str,
    aekl_ckpt: Optional[str] = None,
    disc_ckpt: Optional[str] = None,
    num_workers: int = 8,
    n_epochs: int = 5,
    max_batch_size: int = 2,
    batch_size: int = 16,
    lr: float = 1e-4,
    aug_p: float = 0.8,
    device: str = ('cuda' if torch.cuda.is_available() else 
                   'cpu'),
) -> None:
    """
    Train the autoencoder and discriminator models.

    Args:
        dataset_csv (str): Path to the dataset CSV file.
        cache_dir (str): Directory for caching data.
        output_dir (str): Directory to save model checkpoints.
        aekl_ckpt (Optional[str], optional): Path to the autoencoder checkpoint. Defaults to None.
        disc_ckpt (Optional[str], optional): Path to the discriminator checkpoint. Defaults to None.
        num_workers (int, optional): Number of data loader workers. Defaults to 8.
        n_epochs (int, optional): Number of training epochs. Defaults to 5.
        max_batch_size (int, optional): Actual batch size per iteration. Defaults to 2.
        batch_size (int, optional): Expected (effective) batch size. Defaults to 16.
        lr (float, optional): Learning rate. Defaults to 1e-4.
        aug_p (float, optional): Augmentation probability. Defaults to 0.8.
        device (str, optional): Device to run the training on. Defaults to 'cuda' if available.
    """
    set_environment(0)

    transforms_fn = transforms.Compose([
        transforms.CopyItemsD(keys={'image_path'}, names=['image']),
        transforms.LoadImageD(image_only=True, keys=['image']),
        transforms.EnsureChannelFirstD(keys=['image']),
        transforms.SpacingD(pixdim=2, keys=['image']),
        transforms.ResizeWithPadOrCropD(spatial_size=(80, 96, 80), mode='minimum', keys=['image']),
        transforms.ScaleIntensityD(minv=0, maxv=1, keys=['image'])
    ])

    dataset_df = pd.read_csv(dataset_csv)
    train_df = dataset_df[dataset_df.split == 'train']
    trainset = get_dataset_from_pd(train_df, transforms_fn, cache_dir)

    train_loader = DataLoader(
        dataset=trainset,
        num_workers=num_workers,
        batch_size=max_batch_size,
        shuffle=True,
        persistent_workers=True,
        pin_memory=True,
    )

    print('Device is %s' %(device))
    autoencoder = init_autoencoder(aekl_ckpt).to(device)
    discriminator = init_patch_discriminator(disc_ckpt).to(device)

    # Loss Weights
    adv_weight = 0.025
    perceptual_weight = 0.001
    kl_weight = 1e-7

    # Loss Functions
    l1_loss_fn = L1Loss()
    kl_loss_fn = KLDivergenceLoss()
    adv_loss_fn = PatchAdversarialLoss(criterion="least_squares")

    with warnings.catch_warnings():
        warnings.simplefilter("ignore")
        perc_loss_fn = PerceptualLoss(
            spatial_dims=3,
            network_type="squeeze",
            is_fake_3d=True,
            fake_3d_ratio=0.2
        ).to(device)

    # Optimizers
    optimizer_g = torch.optim.Adam(autoencoder.parameters(), lr=lr)
    optimizer_d = torch.optim.Adam(discriminator.parameters(), lr=lr)

    # Gradient Accumulation
    gradacc_g = GradientAccumulation(
        actual_batch_size=max_batch_size,
        expect_batch_size=batch_size,
        loader_len=len(train_loader),
        optimizer=optimizer_g,
        grad_scaler=GradScaler()
    )

    gradacc_d = GradientAccumulation(
        actual_batch_size=max_batch_size,
        expect_batch_size=batch_size,
        loader_len=len(train_loader),
        optimizer=optimizer_d,
        grad_scaler=GradScaler()
    )

    # Logging
    avgloss = AverageLoss()
    writer = SummaryWriter()
    total_counter = 0

    for epoch in range(n_epochs):
        print(f"[DEBUG] Starting epoch {epoch}/{n_epochs-1}")
        autoencoder.train()
        progress_bar = tqdm(enumerate(train_loader), total=len(train_loader))
        progress_bar.set_description(f'Epoch {epoch}')

        for step, batch in progress_bar:
            # Generator Training
            with autocast(device, enabled=True):
                images = batch["image"].to(device)
                reconstruction, z_mu, z_sigma = autoencoder(images)

                logits_fake = discriminator(reconstruction.contiguous().float())[-1]

                rec_loss = l1_loss_fn(reconstruction.float(), images.float())
                kl_loss = kl_weight * kl_loss_fn(z_mu, z_sigma)
                per_loss = perceptual_weight * perc_loss_fn(reconstruction.float(), images.float())
                gen_loss = adv_weight * adv_loss_fn(logits_fake, target_is_real=True, for_discriminator=False)

                loss_g = rec_loss + kl_loss + per_loss + gen_loss

            gradacc_g.step(loss_g, step)

            # Discriminator Training
            with autocast(device, enabled=True):
                logits_fake = discriminator(reconstruction.contiguous().detach())[-1]
                d_loss_fake = adv_loss_fn(logits_fake, target_is_real=False, for_discriminator=True)
                logits_real = discriminator(images.contiguous().detach())[-1]
                d_loss_real = adv_loss_fn(logits_real, target_is_real=True, for_discriminator=True)
                discriminator_loss = (d_loss_fake + d_loss_real) * 0.5
                loss_d = adv_weight * discriminator_loss

            gradacc_d.step(loss_d, step)

            # Logging
            avgloss.put('Generator/reconstruction_loss', rec_loss.item())
            avgloss.put('Generator/perceptual_loss', per_loss.item())
            avgloss.put('Generator/adversarial_loss', gen_loss.item())
            avgloss.put('Generator/kl_regularization', kl_loss.item())
            avgloss.put('Discriminator/adversarial_loss', loss_d.item())

            if total_counter % 10 == 0:
                step_log = total_counter // 10
                avgloss.to_tensorboard(writer, step_log)
                tb_display_reconstruction(
                    writer,
                    step_log,
                    images[0].detach().cpu(),
                    reconstruction[0].detach().cpu()
                )

            total_counter += 1

        # Save the model after each epoch.
        os.makedirs(output_dir, exist_ok=True)
        torch.save(discriminator.state_dict(), os.path.join(output_dir, f'discriminator-ep-{epoch}.pth'))
        torch.save(autoencoder.state_dict(), os.path.join(output_dir, f'autoencoder-ep-{epoch}.pth'))

    writer.close()
    print("Training completed and models saved.")


def main():
    """
    Main function to parse command-line arguments and run train().
    """
    import argparse

    parser = argparse.ArgumentParser(description="brain2vec Training Script")

    parser.add_argument('--dataset_csv', type=str, required=True, help='Path to the dataset CSV file.')
    parser.add_argument('--cache_dir', type=str, required=True, help='Directory for caching data.')
    parser.add_argument('--output_dir', type=str, required=True, help='Directory to save model checkpoints.')
    parser.add_argument('--aekl_ckpt', type=str, default=None, help='Path to the autoencoder checkpoint.')
    parser.add_argument('--disc_ckpt', type=str, default=None, help='Path to the discriminator checkpoint.')
    parser.add_argument('--num_workers', type=int, default=8, help='Number of data loader workers.')
    parser.add_argument('--n_epochs', type=int, default=5, help='Number of training epochs.')
    parser.add_argument('--max_batch_size', type=int, default=2, help='Actual batch size per iteration.')
    parser.add_argument('--batch_size', type=int, default=16, help='Expected (effective) batch size.')
    parser.add_argument('--lr', type=float, default=1e-4, help='Learning rate.')
    parser.add_argument('--aug_p', type=float, default=0.8, help='Augmentation probability.')

    args = parser.parse_args()

    train(
        dataset_csv=args.dataset_csv,
        cache_dir=args.cache_dir,
        output_dir=args.output_dir,
        aekl_ckpt=args.aekl_ckpt,
        disc_ckpt=args.disc_ckpt,
        num_workers=args.num_workers,
        n_epochs=args.n_epochs,
        max_batch_size=args.max_batch_size,
        batch_size=args.batch_size,
        lr=args.lr,
        aug_p=args.aug_p,
    )


if __name__ == '__main__':
    main()