File size: 7,889 Bytes
ac3730a 46a0841 ac3730a 8c84e52 ac3730a bef8312 ac3730a bef8312 ac3730a bef8312 ac3730a 8c84e52 ac3730a 8c84e52 ac3730a 8c84e52 ac3730a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 |
#!/usr/bin/env python3
"""
inference_brain2vec.py
Loads a pretrained Brain2vec VAE (AutoencoderKL) model and performs inference
on one or more MRI images, generating reconstructions and latent parameters
(z_mu, z_sigma).
Example usage:
# 1) Multiple file paths
python inference_brain2vec.py \
--checkpoint_path /path/to/autoencoder_checkpoint.pth \
--input_images /path/to/img1.nii.gz /path/to/img2.nii.gz \
--output_dir ./vae_inference_outputs \
--device cuda
# 2) Use a CSV containing image paths
python inference_brain2vec.py \
--checkpoint_path /path/to/autoencoder_checkpoint.pth \
--csv_input /path/to/images.csv \
--output_dir ./vae_inference_outputs
"""
import os
import argparse
import numpy as np
import torch
import torch.nn as nn
from typing import Optional
from monai.transforms import (
Compose,
CopyItemsD,
LoadImageD,
EnsureChannelFirstD,
SpacingD,
ResizeWithPadOrCropD,
ScaleIntensityD,
)
from generative.networks.nets import AutoencoderKL
import pandas as pd
RESOLUTION = 2
INPUT_SHAPE_AE = (80, 96, 80)
transforms_fn = Compose([
CopyItemsD(keys={'image_path'}, names=['image']),
LoadImageD(image_only=True, keys=['image']),
EnsureChannelFirstD(keys=['image']),
SpacingD(pixdim=RESOLUTION, keys=['image']),
ResizeWithPadOrCropD(spatial_size=INPUT_SHAPE_AE, mode='minimum', keys=['image']),
ScaleIntensityD(minv=0, maxv=1, keys=['image']),
])
def preprocess_mri(image_path: str, device: str = "cpu") -> torch.Tensor:
"""
Preprocess an MRI using MONAI transforms to produce
a 5D tensor (batch=1, channel=1, D, H, W) for inference.
Args:
image_path (str): Path to the MRI (e.g. .nii.gz).
device (str): Device to place the tensor on.
Returns:
torch.Tensor: Shape (1, 1, D, H, W).
"""
data_dict = {"image_path": image_path}
output_dict = transforms_fn(data_dict)
image_tensor = output_dict["image"] # shape: (1, D, H, W)
image_tensor = image_tensor.unsqueeze(0) # => (1, 1, D, H, W)
return image_tensor.to(device)
class Brain2vec(AutoencoderKL):
"""
Subclass of MONAI's AutoencoderKL that includes:
- a from_pretrained(...) for loading a .pth checkpoint
- uses the existing forward(...) that returns (reconstruction, z_mu, z_sigma)
Usage:
>>> model = Brain2vec.from_pretrained("my_checkpoint.pth", device="cuda")
>>> image_tensor = preprocess_mri("/path/to/mri.nii.gz", device="cuda")
>>> reconstruction, z_mu, z_sigma = model.forward(image_tensor)
"""
@staticmethod
def from_pretrained(
checkpoint_path: Optional[str] = None,
device: str = "cpu"
) -> nn.Module:
"""
Load a pretrained Brain2vec (AutoencoderKL) if a checkpoint_path is provided.
Otherwise, return an uninitialized model.
Args:
checkpoint_path (Optional[str]): Path to a .pth checkpoint file.
device (str): "cpu", "cuda", "mps", etc.
Returns:
nn.Module: The loaded Brain2vec model on the chosen device.
"""
model = Brain2vec(
spatial_dims=3,
in_channels=1,
out_channels=1,
latent_channels=1,
num_channels=(64, 128, 128, 128),
num_res_blocks=2,
norm_num_groups=32,
norm_eps=1e-06,
attention_levels=(False, False, False, False),
with_decoder_nonlocal_attn=False,
with_encoder_nonlocal_attn=False,
)
if checkpoint_path is not None:
if not os.path.exists(checkpoint_path):
raise FileNotFoundError(f"Checkpoint {checkpoint_path} not found.")
state_dict = torch.load(checkpoint_path, map_location=device)
model.load_state_dict(state_dict)
model.to(device)
model.eval()
return model
def main() -> None:
"""
Main function to parse command-line arguments and run inference
with a pretrained Brain2vec model.
"""
parser = argparse.ArgumentParser(
description="Inference script for a Brain2vec (VAE) model."
)
parser.add_argument(
"--checkpoint_path", type=str, required=True,
help="Path to the .pth checkpoint of the pretrained Brain2vec model."
)
parser.add_argument(
"--output_dir", type=str, default="./vae_inference_outputs",
help="Directory to save reconstructions and latent parameters."
)
# Two ways to supply images: multiple file paths or a CSV
parser.add_argument(
"--input_images", type=str, nargs="*",
help="One or more MRI file paths (e.g. .nii.gz)."
)
parser.add_argument(
"--csv_input", type=str,
help="Path to a CSV file with an 'image_path' column."
)
parser.add_argument(
"--embeddings_filename",
type=str,
required=True,
help="Filename (in output_dir) to save the stacked z_mu embeddings (e.g. 'all_z_mu.npy')."
)
parser.add_argument(
"--save_recons",
action="store_true",
help="If set, saves each reconstruction as .npy. Default is not to save."
)
args = parser.parse_args()
os.makedirs(args.output_dir, exist_ok=True)
# After parsing args, add:
device = "cuda" if torch.cuda.is_available() else "cpu"
# Then pass that device to the model:
model = Brain2vec.from_pretrained(
checkpoint_path=args.checkpoint_path,
device=device
)
# Gather image paths
if args.csv_input:
df = pd.read_csv(args.csv_input)
if "image_path" not in df.columns:
raise ValueError("CSV must contain a column named 'image_path'.")
image_paths = df["image_path"].tolist()
else:
if not args.input_images:
raise ValueError("Must provide either --csv_input or --input_images.")
image_paths = args.input_images
# Lists for stacking latent parameters later
all_z_mu = []
all_z_sigma = []
# Inference on each image
for i, img_path in enumerate(image_paths):
if not os.path.exists(img_path):
raise FileNotFoundError(f"Image not found: {img_path}")
print(f"[INFO] Processing image {i}: {img_path}")
img_tensor = preprocess_mri(img_path, device=device)
with torch.no_grad():
recon, z_mu, z_sigma = model.forward(img_tensor)
# Convert to NumPy
recon_np = recon.detach().cpu().numpy() # shape: (1, 1, D, H, W)
z_mu_np = z_mu.detach().cpu().numpy() # shape: (1, latent_channels, ...)
z_sigma_np = z_sigma.detach().cpu().numpy()
# Save each reconstruction (per image) as .npy
if args.save_recons:
recon_path = os.path.join(args.output_dir, f"reconstruction_{i}.npy")
np.save(recon_path, recon_np)
print(f"[INFO] Saved reconstruction to {recon_path}")
# Store latent parameters for optional combined saving
all_z_mu.append(z_mu_np)
all_z_sigma.append(z_sigma_np)
# Combine latent parameters from all images and save
stacked_mu = np.concatenate(all_z_mu, axis=0) # e.g., shape (N, latent_channels, ...)
stacked_sigma = np.concatenate(all_z_sigma, axis=0) # e.g., shape (N, latent_channels, ...)
mu_filename = args.embeddings_filename
if not mu_filename.lower().endswith(".npy"):
mu_filename += ".npy"
mu_path = os.path.join(args.output_dir, mu_filename)
sigma_path = os.path.join(args.output_dir, "all_z_sigma.npy")
np.save(mu_path, stacked_mu)
np.save(sigma_path, stacked_sigma)
print(f"[INFO] Saved z_mu of shape {stacked_mu.shape} to {mu_path}")
print(f"[INFO] Saved z_sigma of shape {stacked_sigma.shape} to {sigma_path}")
if __name__ == "__main__":
main() |