Updates
Browse files- brain2vec.py +2 -2
- model.py +94 -0
brain2vec.py
CHANGED
@@ -72,7 +72,7 @@ import matplotlib.pyplot as plt
|
|
72 |
from torch.utils.tensorboard import SummaryWriter
|
73 |
|
74 |
# choosen resolution
|
75 |
-
RESOLUTION =
|
76 |
|
77 |
# shape of the MNI152 (1mm^3) template
|
78 |
INPUT_SHAPE_1mm = (182, 218, 182)
|
@@ -616,7 +616,7 @@ def main():
|
|
616 |
lr=args.lr,
|
617 |
aug_p=args.aug_p,
|
618 |
)
|
619 |
-
elif args.command == '
|
620 |
inference(
|
621 |
dataset_csv=args.dataset_csv,
|
622 |
aekl_ckpt=args.aekl_ckpt,
|
|
|
72 |
from torch.utils.tensorboard import SummaryWriter
|
73 |
|
74 |
# choosen resolution
|
75 |
+
RESOLUTION = 2
|
76 |
|
77 |
# shape of the MNI152 (1mm^3) template
|
78 |
INPUT_SHAPE_1mm = (182, 218, 182)
|
|
|
616 |
lr=args.lr,
|
617 |
aug_p=args.aug_p,
|
618 |
)
|
619 |
+
elif args.command == 'infer':
|
620 |
inference(
|
621 |
dataset_csv=args.dataset_csv,
|
622 |
aekl_ckpt=args.aekl_ckpt,
|
model.py
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# model.py
|
2 |
+
import os
|
3 |
+
from typing import Optional
|
4 |
+
|
5 |
+
import torch
|
6 |
+
import torch.nn as nn
|
7 |
+
from monai.transforms import (
|
8 |
+
Compose,
|
9 |
+
CopyItemsD,
|
10 |
+
LoadImageD,
|
11 |
+
EnsureChannelFirstD,
|
12 |
+
SpacingD,
|
13 |
+
ResizeWithPadOrCropD,
|
14 |
+
ScaleIntensityD,
|
15 |
+
)
|
16 |
+
from generative.networks.nets import AutoencoderKL
|
17 |
+
|
18 |
+
# Constants for your typical config
|
19 |
+
RESOLUTION = 2
|
20 |
+
INPUT_SHAPE_AE = (80, 96, 80)
|
21 |
+
|
22 |
+
# Define the exact transform pipeline for input MRI
|
23 |
+
transforms_fn = Compose([
|
24 |
+
CopyItemsD(keys={'image_path'}, names=['image']),
|
25 |
+
LoadImageD(image_only=True, keys=['image']),
|
26 |
+
EnsureChannelFirstD(keys=['image']),
|
27 |
+
SpacingD(pixdim=RESOLUTION, keys=['image']),
|
28 |
+
ResizeWithPadOrCropD(spatial_size=INPUT_SHAPE_AE, mode='minimum', keys=['image']),
|
29 |
+
ScaleIntensityD(minv=0, maxv=1, keys=['image']),
|
30 |
+
])
|
31 |
+
|
32 |
+
def preprocess_mri(image_path: str, device: str = "cpu") -> torch.Tensor:
|
33 |
+
"""
|
34 |
+
Preprocess an MRI using MONAI transforms to produce
|
35 |
+
a 5D tensor (batch=1, channels=1, D, H, W) for inference.
|
36 |
+
"""
|
37 |
+
data_dict = {"image_path": image_path}
|
38 |
+
output_dict = transforms_fn(data_dict)
|
39 |
+
image_tensor = output_dict["image"] # shape: (1, D, H, W)
|
40 |
+
image_tensor = image_tensor.unsqueeze(0) # => (batch=1, channel=1, D, H, W)
|
41 |
+
return image_tensor.to(device)
|
42 |
+
|
43 |
+
|
44 |
+
class Brain2vec(AutoencoderKL):
|
45 |
+
"""
|
46 |
+
Subclass of MONAI's AutoencoderKL that includes:
|
47 |
+
- a from_pretrained(...) for loading a .pth checkpoint
|
48 |
+
- uses the existing forward(...) that returns (reconstruction, z_mu, z_sigma)
|
49 |
+
|
50 |
+
Usage:
|
51 |
+
>>> model = Brain2vec.from_pretrained("my_checkpoint.pth", device="cuda")
|
52 |
+
>>> image_tensor = preprocess_mri("/path/to/mri.nii.gz", device="cuda")
|
53 |
+
>>> reconstruction, z_mu, z_sigma = model.forward(image_tensor)
|
54 |
+
"""
|
55 |
+
|
56 |
+
@staticmethod
|
57 |
+
def from_pretrained(
|
58 |
+
checkpoint_path: Optional[str] = None,
|
59 |
+
device: str = "cpu"
|
60 |
+
) -> nn.Module:
|
61 |
+
"""
|
62 |
+
Load a pretrained Brain2vec (AutoencoderKL) if a checkpoint_path is provided.
|
63 |
+
Otherwise, return an uninitialized model.
|
64 |
+
|
65 |
+
Args:
|
66 |
+
checkpoint_path (Optional[str]): path to a .pth checkpoint
|
67 |
+
device (str): "cpu", "cuda", "mps", etc.
|
68 |
+
|
69 |
+
Returns:
|
70 |
+
nn.Module: the loaded Brain2vec model on the chosen device
|
71 |
+
"""
|
72 |
+
model = Brain2vec(
|
73 |
+
spatial_dims=3,
|
74 |
+
in_channels=1,
|
75 |
+
out_channels=1,
|
76 |
+
latent_channels=1,
|
77 |
+
num_channels=(64, 128, 128, 128),
|
78 |
+
num_res_blocks=2,
|
79 |
+
norm_num_groups=32,
|
80 |
+
norm_eps=1e-06,
|
81 |
+
attention_levels=(False, False, False, False),
|
82 |
+
with_decoder_nonlocal_attn=False,
|
83 |
+
with_encoder_nonlocal_attn=False,
|
84 |
+
)
|
85 |
+
|
86 |
+
if checkpoint_path is not None:
|
87 |
+
if not os.path.exists(checkpoint_path):
|
88 |
+
raise FileNotFoundError(f"Checkpoint {checkpoint_path} not found.")
|
89 |
+
state_dict = torch.load(checkpoint_path, map_location=device)
|
90 |
+
model.load_state_dict(state_dict)
|
91 |
+
|
92 |
+
model.to(device)
|
93 |
+
model.eval() # ready for inference
|
94 |
+
return model
|