File size: 9,701 Bytes
bb04d63 653468a bb04d63 653468a bb04d63 653468a bb04d63 653468a bb04d63 653468a bb04d63 653468a bb04d63 653468a bb04d63 653468a bb04d63 653468a bb04d63 653468a bb04d63 653468a bb04d63 653468a bb04d63 653468a bb04d63 653468a bb04d63 653468a bb04d63 653468a bb04d63 653468a bb04d63 653468a bb04d63 653468a bb04d63 653468a bb04d63 653468a bb04d63 653468a bb04d63 653468a bb04d63 653468a bb04d63 653468a bb04d63 653468a bb04d63 653468a bb04d63 653468a bb04d63 653468a 31eae02 bb04d63 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 |
#!/usr/bin/env python3
"""
pca_autoencoder.py
Adjustments requested:
1. Only fit on scans with a 'train' label in the inputs.csv 'split' column.
2. An option to either run incremental PCA or standard PCA.
Example usage:
python pca_autoencoder.py \
--inputs_csv /path/to/inputs.csv \
--output_dir ./pca_outputs \
--pca_type standard \
--n_components 100
"""
import os
import argparse
import numpy as np
import pandas as pd
import torch
from torch.utils.data import DataLoader
from monai import transforms
from monai.data import Dataset, PersistentDataset
# We'll import both PCA classes, and decide which to use based on CLI arg.
from sklearn.decomposition import PCA, IncrementalPCA
###################################################################
# Constants for your typical config
###################################################################
RESOLUTION = 2
INPUT_SHAPE_AE = (80, 96, 80)
DEFAULT_N_COMPONENTS = 1200
###################################################################
# Helper: get_dataset_from_pd (same as in brain2vec_linearAE.py)
###################################################################
def get_dataset_from_pd(df: pd.DataFrame, transforms_fn, cache_dir: str):
"""
Returns a monai.data.Dataset or monai.data.PersistentDataset
if `cache_dir` is defined, to speed up loading.
"""
if cache_dir and cache_dir.strip():
os.makedirs(cache_dir, exist_ok=True)
dataset = PersistentDataset(data=df.to_dict(orient='records'),
transform=transforms_fn,
cache_dir=cache_dir)
else:
dataset = Dataset(data=df.to_dict(orient='records'),
transform=transforms_fn)
return dataset
###################################################################
# PCAAutoencoder
###################################################################
class PCAAutoencoder:
"""
A PCA 'autoencoder' that can use either standard PCA or IncrementalPCA:
- fit(X): trains the model
- transform(X): get embeddings
- inverse_transform(Z): reconstruct data from embeddings
- forward(X): returns (X_recon, Z)
If using standard PCA, we do a single call to .fit(X).
If using incremental PCA, we do .partial_fit on data in batches.
"""
def __init__(self, n_components=DEFAULT_N_COMPONENTS, batch_size=128, pca_type='incremental'):
"""
Args:
n_components (int): number of principal components to keep
batch_size (int): chunk size for either partial_fit or chunked .transform
pca_type (str): 'incremental' or 'standard'
"""
self.n_components = n_components
self.batch_size = batch_size
self.pca_type = pca_type.lower()
if self.pca_type == 'standard':
self.ipca = PCA(n_components=self.n_components, svd_solver='randomized')
else:
# default to incremental
self.ipca = IncrementalPCA(n_components=self.n_components)
def fit(self, X: np.ndarray):
"""
Fit the PCA model. If incremental, calls partial_fit in batches.
If standard, calls .fit once on the entire data matrix.
X: shape (n_samples, n_features)
"""
if self.pca_type == 'standard':
# Potentially large memory usage, so be sure your system can handle it.
self.ipca.fit(X)
else:
# IncrementalPCA
n_samples = X.shape[0]
for start_idx in range(0, n_samples, self.batch_size):
end_idx = min(start_idx + self.batch_size, n_samples)
self.ipca.partial_fit(X[start_idx:end_idx])
def transform(self, X: np.ndarray) -> np.ndarray:
"""
Project data into the PCA latent space in batches for memory efficiency.
Returns Z with shape (n_samples, n_components)
"""
results = []
n_samples = X.shape[0]
for start_idx in range(0, n_samples, self.batch_size):
end_idx = min(start_idx + self.batch_size, n_samples)
Z_chunk = self.ipca.transform(X[start_idx:end_idx])
results.append(Z_chunk)
return np.vstack(results)
def inverse_transform(self, Z: np.ndarray) -> np.ndarray:
"""
Reconstruct data from PCA latent space in batches.
Returns X_recon with shape (n_samples, n_features).
"""
results = []
n_samples = Z.shape[0]
for start_idx in range(0, n_samples, self.batch_size):
end_idx = min(start_idx + self.batch_size, n_samples)
X_chunk = self.ipca.inverse_transform(Z[start_idx:end_idx])
results.append(X_chunk)
return np.vstack(results)
def forward(self, X: np.ndarray) -> tuple[np.ndarray, np.ndarray]:
"""
Mimics a linear AE's forward() returning (X_recon, Z).
"""
Z = self.transform(X)
X_recon = self.inverse_transform(Z)
return X_recon, Z
###################################################################
# Load and Flatten Data
###################################################################
def load_and_flatten_dataset(csv_path: str, cache_dir: str, transforms_fn) -> np.ndarray:
"""
1) Reads CSV.
2) Filters rows if 'split' in columns => only keep 'split' == 'train'.
3) Applies transforms to each image, flattening them into a 1D vector (614,400).
4) Returns a NumPy array X: shape (n_samples, 614400).
"""
df = pd.read_csv(csv_path)
# Filter only 'train' if the split column exists
if 'split' in df.columns:
df = df[df['split'] == 'train']
# If there is no 'split' column, we assume the entire CSV is for training.
dataset = get_dataset_from_pd(df, transforms_fn, cache_dir)
loader = DataLoader(dataset, batch_size=1, num_workers=0)
# We'll store each flattened volume in a list, then stack
X_list = []
for batch in loader:
# batch["image"] shape => (1, 1, 80, 96, 80)
img = batch["image"].squeeze(0) # => (1, 80, 96, 80)
img_np = img.numpy()
flattened = img_np.flatten() # => (614400,)
X_list.append(flattened)
if len(X_list) == 0:
raise ValueError("No training samples found (split='train'). Check your CSV or 'split' values.")
X = np.vstack(X_list)
return X
###################################################################
# Main
###################################################################
def main():
parser = argparse.ArgumentParser(description="PCA Autoencoder with MONAI transforms and 'split' filtering.")
parser.add_argument("--inputs_csv", type=str, required=True,
help="Path to CSV with at least 'image_path' column, optional 'split' column.")
parser.add_argument("--cache_dir", type=str, default="",
help="Cache directory for MONAI PersistentDataset (optional).")
parser.add_argument("--output_dir", type=str, default="./pca_outputs",
help="Where to save PCA model and embeddings.")
parser.add_argument("--batch_size_ipca", type=int, default=128,
help="Batch size for partial_fit or chunked transform.")
parser.add_argument("--n_components", type=int, default=1200,
help="Number of PCA components to keep.")
parser.add_argument("--pca_type", type=str, default="incremental",
choices=["incremental", "standard"],
help="Which PCA algorithm to use: 'incremental' or 'standard'.")
args = parser.parse_args()
os.makedirs(args.output_dir, exist_ok=True)
# define transforms as in brain2vec_linearAE.py
transforms_fn = transforms.Compose([
transforms.CopyItemsD(keys={'image_path'}, names=['image']),
transforms.LoadImageD(image_only=True, keys=['image']),
transforms.EnsureChannelFirstD(keys=['image']),
transforms.SpacingD(pixdim=RESOLUTION, keys=['image']),
transforms.ResizeWithPadOrCropD(spatial_size=INPUT_SHAPE_AE, mode='minimum', keys=['image']),
transforms.ScaleIntensityD(minv=0, maxv=1, keys=['image']),
])
print("Loading and flattening dataset from:", args.inputs_csv)
X = load_and_flatten_dataset(args.inputs_csv, args.cache_dir, transforms_fn)
print(f"Dataset shape after flattening: {X.shape}")
# Build the PCAAutoencoder with chosen type
model = PCAAutoencoder(
n_components=args.n_components,
batch_size=args.batch_size_ipca,
pca_type=args.pca_type
)
# Fit the PCA model
print(f"Fitting {args.pca_type.capitalize()}PCA in batches...")
model.fit(X)
print("Done fitting PCA. Transforming data to embeddings...")
# Get embeddings & reconstruction
X_recon, Z = model.forward(X)
print("Embeddings shape:", Z.shape) # (n_samples, n_components)
print("Reconstruction shape:", X_recon.shape) # (n_samples, 614400)
# Save
embeddings_path = os.path.join(args.output_dir, "pca_embeddings.npy")
recons_path = os.path.join(args.output_dir, "pca_reconstructions.npy")
np.save(embeddings_path, Z)
np.save(recons_path, X_recon)
print(f"Saved embeddings to {embeddings_path}")
print(f"Saved reconstructions to {recons_path}")
# Optionally save the actual PCA model with joblib
from joblib import dump
ipca_model_path = os.path.join(args.output_dir, "pca_model.joblib")
dump(model.ipca, ipca_model_path)
print(f"Saved PCA model to {ipca_model_path}")
if __name__ == "__main__":
main() |