File size: 10,175 Bytes
0178b19 1af0b7a 0178b19 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 |
#!/usr/bin/env python3
"""
train_brain2vec_PCA.py
A PCA-based "autoencoder" script for brain MRI data, with support for both
incremental PCA and standard PCA. Only scans labeled 'train' in the CSV
(split == 'train') will be used for fitting.
Example usage:
python train_brain2vec_PCA.py \
--inputs_csv /path/to/inputs.csv \
--output_dir ./pca_outputs \
--pca_type standard \
--n_components 1200
"""
import os
import argparse
import numpy as np
import pandas as pd
import torch
from torch.utils.data import DataLoader
from monai import transforms
from monai.data import Dataset, PersistentDataset
from monai.transforms.transform import Transform
from sklearn.decomposition import PCA, IncrementalPCA
from typing import Optional, Union, Tuple
# voxel resolution
RESOLUTION = 2
# cropped image dimensions after transform
INPUT_SHAPE_AE = (80, 96, 80)
DEFAULT_N_COMPONENTS = 1200
def get_dataset_from_pd(
df: pd.DataFrame,
transforms_fn: Transform,
cache_dir: Optional[str]
) -> Union[Dataset, PersistentDataset]:
"""
Create a MONAI Dataset or PersistentDataset from the given DataFrame.
Args:
df (pd.DataFrame): DataFrame with at least 'image_path' column.
transforms_fn (Transform): MONAI transform pipeline.
cache_dir (Optional[str]): If provided, use PersistentDataset caching.
Returns:
Dataset|PersistentDataset: A dataset for training or inference.
"""
data_dicts = df.to_dict(orient='records')
if cache_dir and cache_dir.strip():
os.makedirs(cache_dir, exist_ok=True)
dataset = PersistentDataset(
data=data_dicts,
transform=transforms_fn,
cache_dir=cache_dir
)
else:
dataset = Dataset(data=data_dicts, transform=transforms_fn)
return dataset
class PCAAutoencoder:
"""
A PCA 'autoencoder' that can use either standard PCA or IncrementalPCA:
- fit(X): trains the model
- transform(X): get embeddings
- inverse_transform(Z): reconstruct data from embeddings
- forward(X): returns (X_recon, Z).
If using standard PCA, a single call to .fit(X) is made.
If using incremental PCA, .partial_fit is called in batches.
"""
def __init__(
self,
n_components: int = DEFAULT_N_COMPONENTS,
batch_size: int = 128,
pca_type: str = 'standard'
) -> None:
"""
Initialize the PCAAutoencoder.
Args:
n_components (int): Number of principal components to keep.
batch_size (int): Chunk size for partial_fit or chunked transform.
pca_type (str): Either 'incremental' or 'standard'.
"""
self.n_components = n_components
self.batch_size = batch_size
self.pca_type = pca_type.lower()
if self.pca_type == 'incremental':
self.ipca = IncrementalPCA(n_components=self.n_components)
else:
# Default to standard PCA
self.ipca = PCA(n_components=self.n_components, svd_solver='randomized')
def fit(self, X: np.ndarray) -> None:
"""
Fit the PCA model. If incremental PCA, calls partial_fit in batches;
otherwise calls .fit once on the entire data array.
Args:
X (np.ndarray): Shape (n_samples, n_features).
"""
if self.pca_type == 'standard':
self.ipca.fit(X)
else:
# IncrementalPCA
n_samples = X.shape[0]
for start_idx in range(0, n_samples, self.batch_size):
end_idx = min(start_idx + self.batch_size, n_samples)
self.ipca.partial_fit(X[start_idx:end_idx])
def transform(self, X: np.ndarray) -> np.ndarray:
"""
Project data into the PCA latent space in batches for memory efficiency.
Args:
X (np.ndarray): Shape (n_samples, n_features).
Returns:
np.ndarray: Latent embeddings of shape (n_samples, n_components).
"""
results = []
n_samples = X.shape[0]
for start_idx in range(0, n_samples, self.batch_size):
end_idx = min(start_idx + self.batch_size, n_samples)
Z_chunk = self.ipca.transform(X[start_idx:end_idx])
results.append(Z_chunk)
return np.vstack(results)
def inverse_transform(self, Z: np.ndarray) -> np.ndarray:
"""
Reconstruct data from PCA latent space in batches.
Args:
Z (np.ndarray): Latent embeddings of shape (n_samples, n_components).
Returns:
np.ndarray: Reconstructed data of shape (n_samples, n_features).
"""
results = []
n_samples = Z.shape[0]
for start_idx in range(0, n_samples, self.batch_size):
end_idx = min(start_idx + self.batch_size, n_samples)
X_chunk = self.ipca.inverse_transform(Z[start_idx:end_idx])
results.append(X_chunk)
return np.vstack(results)
def forward(self, X: np.ndarray) -> Tuple[np.ndarray, np.ndarray]:
"""
Mimic a linear AE's forward() returning (X_recon, Z).
Args:
X (np.ndarray): Original data of shape (n_samples, n_features).
Returns:
tuple[np.ndarray, np.ndarray]: (X_recon, Z).
"""
Z = self.transform(X)
X_recon = self.inverse_transform(Z)
return X_recon, Z
def load_and_flatten_dataset(
csv_path: str,
cache_dir: str,
transforms_fn: Transform
) -> np.ndarray:
"""
Load and flatten MRI volumes from the provided CSV.
1) Reads CSV.
2) Filters rows if 'split' in columns => only keep rows with split == 'train'.
3) Applies transforms to each image, flattening them into a 1D vector.
4) Returns a NumPy array X of shape (n_samples, 614400) after flattening.
Args:
csv_path (str): Path to a CSV containing at least 'image_path' column.
Optionally has a 'split' column.
cache_dir (str): Path to cache directory for MONAI PersistentDataset.
transforms_fn (Transform): MONAI transform pipeline.
Returns:
np.ndarray: Flattened image data of shape (n_samples, 614400).
"""
df = pd.read_csv(csv_path)
# Keep only 'train' samples if split column exists
if 'split' in df.columns:
df = df[df['split'] == 'train']
dataset = get_dataset_from_pd(df, transforms_fn, cache_dir)
loader = DataLoader(dataset, batch_size=1, num_workers=0)
X_list = []
for batch in loader:
# batch["image"] => shape (1, 1, 80, 96, 80)
img = batch["image"].squeeze(0) # => shape (1, 80, 96, 80)
flattened = img.numpy().flatten() # => (614400,)
X_list.append(flattened)
if not X_list:
raise ValueError(
"No training samples found (split='train'). Check your CSV or 'split' values."
)
X = np.vstack(X_list)
return X
def main() -> None:
"""
Main function to parse command-line arguments and fit a PCA or IncrementalPCA model,
then save embeddings and reconstructions.
"""
parser = argparse.ArgumentParser(
description="PCA Autoencoder with MONAI transforms and 'split' filtering."
)
parser.add_argument(
"--inputs_csv", type=str, required=True,
help="Path to CSV with at least 'image_path' column and optional 'split' column."
)
parser.add_argument(
"--cache_dir", type=str, default="",
help="Cache directory for MONAI PersistentDataset (optional)."
)
parser.add_argument(
"--output_dir", type=str, default="./pca_outputs",
help="Where to save PCA model and embeddings."
)
parser.add_argument(
"--batch_size_ipca", type=int, default=128,
help="Batch size for partial_fit or chunked transform."
)
parser.add_argument(
"--n_components", type=int, default=1200,
help="Number of PCA components to keep."
)
parser.add_argument(
"--pca_type", type=str, default="incremental",
choices=["incremental", "standard"],
help="Which PCA algorithm to use: 'incremental' or 'standard'."
)
args = parser.parse_args()
os.makedirs(args.output_dir, exist_ok=True)
transforms_fn = transforms.Compose([
transforms.CopyItemsD(keys={'image_path'}, names=['image']),
transforms.LoadImageD(image_only=True, keys=['image']),
transforms.EnsureChannelFirstD(keys=['image']),
transforms.SpacingD(pixdim=RESOLUTION, keys=['image']),
transforms.ResizeWithPadOrCropD(
spatial_size=INPUT_SHAPE_AE, mode='minimum', keys=['image']
),
transforms.ScaleIntensityD(minv=0, maxv=1, keys=['image']),
])
print("Loading and flattening dataset from:", args.inputs_csv)
X = load_and_flatten_dataset(args.inputs_csv, args.cache_dir, transforms_fn)
print(f"Dataset shape after flattening: {X.shape}")
# Build the PCAAutoencoder with chosen type
model = PCAAutoencoder(
n_components=args.n_components,
batch_size=args.batch_size_ipca,
pca_type=args.pca_type
)
# Fit the PCA model
print(f"Fitting {args.pca_type.capitalize()}PCA")
model.fit(X)
print("Done fitting PCA. Transforming data to embeddings...")
# Get embeddings & reconstruction
X_recon, Z = model.forward(X)
print("Embeddings shape:", Z.shape)
print("Reconstruction shape:", X_recon.shape)
# Save embeddings and reconstructions
embeddings_path = os.path.join(args.output_dir, "pca_embeddings.npy")
recons_path = os.path.join(args.output_dir, "pca_reconstructions.npy")
np.save(embeddings_path, Z)
np.save(recons_path, X_recon)
print(f"Saved embeddings to {embeddings_path}")
print(f"Saved reconstructions to {recons_path}")
# Optionally save the actual PCA model with joblib
from joblib import dump
ipca_model_path = os.path.join(args.output_dir, "pca_model.joblib")
dump(model.ipca, ipca_model_path)
print(f"Saved PCA model to {ipca_model_path}")
if __name__ == "__main__":
main() |