File size: 7,630 Bytes
bb04d63 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 |
#!/usr/bin/env python3
"""
pca_autoencoder.py
This script demonstrates how to:
1) Load a dataset of MRI volumes using MONAI transforms (as in brain2vec_linearAE.py).
2) Flatten each 3D volume into a 1D vector (614,400 features if 80x96x80).
3) Perform IncrementalPCA to reduce dimensionality to 1200 components.
4) Provide a 'forward()' method that returns (reconstruction, embedding),
mimicking the interface of a linear autoencoder.
"""
import os
import argparse
import numpy as np
import pandas as pd
import torch
from torch.utils.data import DataLoader
from monai import transforms
from monai.data import Dataset, PersistentDataset
from sklearn.decomposition import IncrementalPCA
###################################################################
# Constants for your typical config
###################################################################
RESOLUTION = 2
INPUT_SHAPE_AE = (80, 96, 80)
N_COMPONENTS = 1200
###################################################################
# Helper classes/functions
###################################################################
def get_dataset_from_pd(df: pd.DataFrame, transforms_fn, cache_dir: str):
"""
Returns a monai.data.Dataset or monai.data.PersistentDataset
if `cache_dir` is defined, to speed up loading.
"""
if cache_dir and cache_dir.strip():
os.makedirs(cache_dir, exist_ok=True)
dataset = PersistentDataset(data=df.to_dict(orient='records'),
transform=transforms_fn,
cache_dir=cache_dir)
else:
dataset = Dataset(data=df.to_dict(orient='records'),
transform=transforms_fn)
return dataset
class PCAAutoencoder:
"""
A PCA 'autoencoder' using IncrementalPCA for memory efficiency,
providing:
- fit(X): partial fit on batches
- transform(X): get embeddings
- inverse_transform(Z): reconstruct from embeddings
- forward(X): returns (X_recon, Z) for a direct API
similar to a shallow linear AE.
"""
def __init__(self, n_components=N_COMPONENTS, batch_size=128):
self.n_components = n_components
self.batch_size = batch_size
self.ipca = IncrementalPCA(n_components=self.n_components)
def fit(self, X: np.ndarray):
"""
Incrementally fit the PCA model on batches of data.
X: shape (n_samples, n_features).
"""
n_samples = X.shape[0]
for start_idx in range(0, n_samples, self.batch_size):
end_idx = min(start_idx + self.batch_size, n_samples)
self.ipca.partial_fit(X[start_idx:end_idx])
def transform(self, X: np.ndarray) -> np.ndarray:
"""
Projects data into the PCA latent space in batches.
Returns Z: shape (n_samples, n_components).
"""
results = []
n_samples = X.shape[0]
for start_idx in range(0, n_samples, self.batch_size):
end_idx = min(start_idx + self.batch_size, n_samples)
Z_chunk = self.ipca.transform(X[start_idx:end_idx])
results.append(Z_chunk)
return np.vstack(results)
def inverse_transform(self, Z: np.ndarray) -> np.ndarray:
"""
Reconstruct data from PCA latent space in batches.
Returns X_recon: shape (n_samples, n_features).
"""
results = []
n_samples = Z.shape[0]
for start_idx in range(0, n_samples, self.batch_size):
end_idx = min(start_idx + self.batch_size, n_samples)
X_chunk = self.ipca.inverse_transform(Z[start_idx:end_idx])
results.append(X_chunk)
return np.vstack(results)
def forward(self, X: np.ndarray) -> tuple[np.ndarray, np.ndarray]:
"""
Mimics a linear AE's forward() returning (X_recon, Z).
"""
Z = self.transform(X)
X_recon = self.inverse_transform(Z)
return X_recon, Z
def load_and_flatten_dataset(csv_path: str, cache_dir: str, transforms_fn) -> np.ndarray:
"""
Loads the dataset from csv_path, applies the monai transforms,
and flattens each 3D MRI into a 1D vector of shape (80*96*80).
Returns a numpy array X with shape (n_samples, 614400).
"""
df = pd.read_csv(csv_path)
dataset = get_dataset_from_pd(df, transforms_fn, cache_dir)
# We'll put the flattened data into this list, then stack.
X_list = []
# If memory allows, you can simply do a single-threaded loop
# or multi-worker DataLoader for speed.
# We'll demonstrate a simple single-worker here for clarity.
loader = DataLoader(dataset, batch_size=1, num_workers=0)
for batch in loader:
# batch["image"] shape: (1, 1, 80, 96, 80)
img = batch["image"].squeeze(0) # shape: (1, 80, 96, 80)
img_np = img.numpy() # convert to np array, shape: (1, D, H, W)
flattened = img_np.flatten() # shape: (614400,)
X_list.append(flattened)
X = np.vstack(X_list) # shape: (n_samples, 614400)
return X
def main():
parser = argparse.ArgumentParser(description="PCA Autoencoder with MONAI transforms example.")
parser.add_argument("--inputs_csv", type=str, required=True, help="CSV with 'image_path' column.")
parser.add_argument("--cache_dir", type=str, default="", help="Cache directory for MONAI PersistentDataset.")
parser.add_argument("--output_dir", type=str, default="./pca_outputs", help="Where to save PCA model and embeddings.")
parser.add_argument("--batch_size_ipca", type=int, default=128, help="Batch size for IncrementalPCA partial_fit().")
parser.add_argument("--n_components", type=int, default=1200, help="Number of PCA components.")
args = parser.parse_args()
os.makedirs(args.output_dir, exist_ok=True)
# Same transforms as in brain2vec_linearAE.py
transforms_fn = transforms.Compose([
transforms.CopyItemsD(keys={'image_path'}, names=['image']),
transforms.LoadImageD(image_only=True, keys=['image']),
transforms.EnsureChannelFirstD(keys=['image']),
transforms.SpacingD(pixdim=RESOLUTION, keys=['image']),
transforms.ResizeWithPadOrCropD(spatial_size=INPUT_SHAPE_AE, mode='minimum', keys=['image']),
transforms.ScaleIntensityD(minv=0, maxv=1, keys=['image']),
])
print("Loading and flattening dataset from:", args.inputs_csv)
X = load_and_flatten_dataset(args.inputs_csv, args.cache_dir, transforms_fn)
print(f"Dataset shape after flattening: {X.shape}")
# Build PCAAutoencoder
model = PCAAutoencoder(n_components=args.n_components, batch_size=args.batch_size_ipca)
# Fit the PCA model
print("Fitting IncrementalPCA in batches...")
model.fit(X)
print("Done fitting PCA. Transforming data to embeddings...")
# Get embeddings & reconstruction
X_recon, Z = model.forward(X)
print("Embeddings shape:", Z.shape)
print("Reconstruction shape:", X_recon.shape)
# Optional: Save
embeddings_path = os.path.join(args.output_dir, "pca_embeddings.npy")
recons_path = os.path.join(args.output_dir, "pca_reconstructions.npy")
np.save(embeddings_path, Z)
np.save(recons_path, X_recon)
print(f"Saved embeddings to {embeddings_path} and reconstructions to {recons_path}")
# If you want to store the actual PCA components for future usage:
# from joblib import dump
# ipca_model_path = os.path.join(args.output_dir, "pca_model.joblib")
# dump(model.ipca, ipca_model_path)
# print(f"Saved PCA model to {ipca_model_path}")
if __name__ == "__main__":
main() |