File size: 7,666 Bytes
0178b19 befe2aa 0178b19 befe2aa 0178b19 befe2aa 0178b19 1af0b7a 0178b19 1af0b7a 0178b19 1af0b7a 0178b19 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 |
#!/usr/bin/env python3
"""
inference_brain2vec_PCA.py
Loads a pre-trained PCA-based Brain2Vec model (saved with joblib) and performs
inference on one or more input images. Produces embeddings (and optional
reconstructions) for each image.
Example usage:
python inference_brain2vec_PCA.py \
--pca_model pca_model.joblib \
--input_images /path/to/img1.nii.gz /path/to/img2.nii.gz \
--output_dir pca_output \
--embeddings_filename pca_embeddings_2 \
--save_recons
Or, if you have a CSV with image paths:
python inference_brain2vec_PCA.py \
--pca_model pca_model.joblib \
--csv_input inputs.csv \
--output_dir pca_output \
--embeddings_filename pca_embeddings_all
"""
import os
import argparse
import numpy as np
import torch
import torch.nn as nn
from joblib import load
import pandas as pd
from monai.transforms import (
Compose,
CopyItemsD,
LoadImageD,
EnsureChannelFirstD,
SpacingD,
ResizeWithPadOrCropD,
ScaleIntensityD,
)
# Global constants
RESOLUTION = 2
INPUT_SHAPE_AE = (80, 96, 80)
FLATTENED_DIM = INPUT_SHAPE_AE[0] * INPUT_SHAPE_AE[1] * INPUT_SHAPE_AE[2]
# Reusable MONAI pipeline for preprocessing
transforms_fn = Compose([
CopyItemsD(keys={'image_path'}, names=['image']),
LoadImageD(image_only=True, keys=['image']),
EnsureChannelFirstD(keys=['image']),
SpacingD(pixdim=RESOLUTION, keys=['image']),
ResizeWithPadOrCropD(spatial_size=INPUT_SHAPE_AE, mode='minimum', keys=['image']),
ScaleIntensityD(minv=0, maxv=1, keys=['image']),
])
def preprocess_mri(image_path: str) -> torch.Tensor:
"""
Preprocess an MRI using MONAI transforms to produce
a 5D Torch tensor: (batch=1, channel=1, D, H, W).
Args:
image_path (str): Path to the MRI (e.g., .nii.gz file).
Returns:
torch.Tensor: Preprocessed 5D tensor of shape (1, 1, D, H, W).
"""
data_dict = {"image_path": image_path}
output_dict = transforms_fn(data_dict)
# shape => (1, D, H, W)
image_tensor = output_dict["image"].unsqueeze(0) # => (1, 1, D, H, W)
return image_tensor.float()
class PCABrain2vec(nn.Module):
"""
A PCA-based 'autoencoder' that mimics a typical VAE interface:
- from_pretrained(...) to load a PCA model from disk
- forward(...) returns (reconstruction, embedding, None)
Steps:
1. Flatten the input volume (N, 1, D, H, W) => (N, 614400).
2. Transform -> embeddings => shape (N, n_components).
3. Inverse transform -> recon => shape (N, 614400).
4. Reshape => (N, 1, D, H, W).
"""
def __init__(self, pca_model=None):
super().__init__()
self.pca_model = pca_model
def forward(self, x: torch.Tensor):
"""
Perform a forward pass of the PCA-based "autoencoder".
Args:
x (torch.Tensor): Input of shape (N, 1, D, H, W).
Returns:
tuple(torch.Tensor, torch.Tensor, None):
- reconstruction: (N, 1, D, H, W)
- embedding: (N, n_components)
- None (to align with the typical VAE interface).
"""
n_samples = x.shape[0]
x_cpu = x.detach().cpu().numpy() # (N, 1, D, H, W)
x_flat = x_cpu.reshape(n_samples, -1) # => (N, FLATTENED_DIM)
# PCA transform => embeddings shape (N, n_components)
embedding_np = self.pca_model.transform(x_flat)
# PCA inverse_transform => recon shape (N, FLATTENED_DIM)
recon_np = self.pca_model.inverse_transform(embedding_np)
recon_np = recon_np.reshape(n_samples, 1, *INPUT_SHAPE_AE)
# Convert back to torch
reconstruction_torch = torch.from_numpy(recon_np).float()
embedding_torch = torch.from_numpy(embedding_np).float()
return reconstruction_torch, embedding_torch, None
@staticmethod
def from_pretrained(pca_path: str) -> "PCABrain2vec":
"""
Load a pre-trained PCA model (pickled or joblib) from disk.
Args:
pca_path (str): File path to the PCA model.
Returns:
PCABrain2vec: An instance wrapping the loaded PCA model.
"""
if not os.path.exists(pca_path):
raise FileNotFoundError(f"Could not find PCA model at {pca_path}")
pca_model = load(pca_path)
return PCABrain2vec(pca_model=pca_model)
def main() -> None:
"""
Main function to parse command-line arguments and run inference
with a pre-trained PCA Brain2Vec model.
"""
parser = argparse.ArgumentParser(
description="PCA-based Brain2Vec Inference Script"
)
parser.add_argument(
"--pca_model", type=str, required=True,
help="Path to the saved PCA model (.joblib)."
)
parser.add_argument(
"--output_dir", type=str, default="./pca_inference_outputs",
help="Directory to save embeddings/reconstructions."
)
# Two ways to supply images: multiple files or a CSV
parser.add_argument(
"--input_images", type=str, nargs="*",
help="One or more image paths for inference."
)
parser.add_argument(
"--csv_input", type=str, default=None,
help="Path to a CSV containing column 'image_path'."
)
parser.add_argument(
"--embeddings_filename",
type=str,
required=True,
help="Filename (without path) to save the stacked embeddings (e.g., 'pca_embeddings.npy')."
)
parser.add_argument(
"--save_recons",
action="store_true",
help="If set, save each reconstruction as .npy. Default is not to save."
)
args = parser.parse_args()
os.makedirs(args.output_dir, exist_ok=True)
# Build the PCA model
pca_brain2vec = PCABrain2vec.from_pretrained(args.pca_model)
pca_brain2vec.eval()
# Gather image paths
if args.csv_input:
df = pd.read_csv(args.csv_input)
if "image_path" not in df.columns:
raise ValueError("CSV must contain a column named 'image_path'.")
image_paths = df["image_path"].tolist()
else:
if not args.input_images:
raise ValueError(
"Must provide either --csv_input or --input_images."
)
image_paths = args.input_images
# Inference loop
all_embeddings = []
for i, img_path in enumerate(image_paths):
if not os.path.exists(img_path):
raise FileNotFoundError(f"Image not found: {img_path}")
# Preprocess
img_tensor = preprocess_mri(img_path)
# Forward pass
with torch.no_grad():
recon, embedding, _ = pca_brain2vec(img_tensor)
# Convert to CPU numpy
embedding_np = embedding.detach().cpu().numpy()
recon_np = recon.detach().cpu().numpy()
# Save (one embedding row per image)
all_embeddings.append(embedding_np)
# Optionally save or visualize reconstructions
if args.save_recons:
out_recon_path = os.path.join(args.output_dir, f"reconstruction_{i}.npy")
np.save(out_recon_path, recon_np)
print(f"[INFO] Saved reconstruction to: {out_recon_path}")
# Save all embeddings stacked
stacked_embeddings = np.vstack(all_embeddings) # (N, n_components)
filename = args.embeddings_filename
if not filename.lower().endswith(".npy"):
filename += ".npy"
out_embed_path = os.path.join(args.output_dir, filename)
np.save(out_embed_path, stacked_embeddings)
print(f"[INFO] Saved embeddings of shape {stacked_embeddings.shape} to: {out_embed_path}")
if __name__ == "__main__":
main() |