|
|
|
|
|
import torch
|
|
import torch.nn.functional as F
|
|
from einops import rearrange, repeat
|
|
|
|
|
|
class IndexFirstAxis(torch.autograd.Function):
|
|
@staticmethod
|
|
def forward(ctx, input, indices):
|
|
ctx.save_for_backward(indices)
|
|
assert input.ndim >= 2
|
|
ctx.first_axis_dim, other_shape = input.shape[0], input.shape[1:]
|
|
second_dim = other_shape.numel()
|
|
|
|
|
|
return torch.gather(
|
|
rearrange(input, "b ... -> b (...)"),
|
|
0,
|
|
repeat(indices, "z -> z d", d=second_dim),
|
|
).reshape(-1, *other_shape)
|
|
|
|
@staticmethod
|
|
def backward(ctx, grad_output):
|
|
(indices,) = ctx.saved_tensors
|
|
assert grad_output.ndim >= 2
|
|
other_shape = grad_output.shape[1:]
|
|
grad_output = rearrange(grad_output, "b ... -> b (...)")
|
|
grad_input = torch.zeros(
|
|
[ctx.first_axis_dim, grad_output.shape[1]],
|
|
device=grad_output.device,
|
|
dtype=grad_output.dtype,
|
|
)
|
|
|
|
|
|
grad_input.scatter_(
|
|
0, repeat(indices, "z -> z d", d=grad_output.shape[1]), grad_output
|
|
)
|
|
return grad_input.reshape(ctx.first_axis_dim, *other_shape), None
|
|
|
|
|
|
index_first_axis = IndexFirstAxis.apply
|
|
|
|
|
|
class IndexPutFirstAxis(torch.autograd.Function):
|
|
@staticmethod
|
|
def forward(ctx, values, indices, first_axis_dim):
|
|
ctx.save_for_backward(indices)
|
|
assert indices.ndim == 1
|
|
assert values.ndim >= 2
|
|
output = torch.zeros(
|
|
first_axis_dim, *values.shape[1:], device=values.device, dtype=values.dtype
|
|
)
|
|
|
|
output[indices] = values
|
|
|
|
return output
|
|
|
|
@staticmethod
|
|
def backward(ctx, grad_output):
|
|
(indices,) = ctx.saved_tensors
|
|
|
|
grad_values = grad_output[indices]
|
|
|
|
return grad_values, None, None
|
|
|
|
|
|
index_put_first_axis = IndexPutFirstAxis.apply
|
|
|
|
|
|
class IndexFirstAxisResidual(torch.autograd.Function):
|
|
@staticmethod
|
|
def forward(ctx, input, indices):
|
|
ctx.save_for_backward(indices)
|
|
assert input.ndim >= 2
|
|
ctx.first_axis_dim, other_shape = input.shape[0], input.shape[1:]
|
|
second_dim = other_shape.numel()
|
|
|
|
output = input[indices]
|
|
|
|
|
|
|
|
return output, input.detach()
|
|
|
|
@staticmethod
|
|
def backward(ctx, grad_output, grad_residual):
|
|
(indices,) = ctx.saved_tensors
|
|
assert grad_output.ndim >= 2
|
|
other_shape = grad_output.shape[1:]
|
|
assert grad_residual.shape[1:] == other_shape
|
|
grad_input = grad_residual
|
|
|
|
indices = indices.reshape(indices.shape[0], *((1,) * (grad_output.ndim - 1)))
|
|
indices = indices.expand_as(grad_output)
|
|
grad_input.scatter_add_(0, indices, grad_output)
|
|
return grad_input.reshape(ctx.first_axis_dim, *other_shape), None
|
|
|
|
|
|
index_first_axis_residual = IndexFirstAxisResidual.apply
|
|
|
|
|
|
def unpad_input(hidden_states, attention_mask):
|
|
"""
|
|
Arguments:
|
|
hidden_states: (batch, seqlen, ...)
|
|
attention_mask: (batch, seqlen), bool / int, 1 means valid and 0 means not valid.
|
|
Return:
|
|
hidden_states: (total_nnz, ...), where total_nnz = number of tokens in selected in attention_mask.
|
|
indices: (total_nnz), the indices of non-masked tokens from the flattened input sequence.
|
|
cu_seqlens: (batch + 1), the cumulative sequence lengths, used to index into hidden_states.
|
|
max_seqlen_in_batch: int
|
|
"""
|
|
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
|
|
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
|
|
max_seqlen_in_batch = seqlens_in_batch.max().item()
|
|
cu_seqlens = F.pad(
|
|
torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0)
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
return (
|
|
index_first_axis(rearrange(hidden_states, "b s ... -> (b s) ..."), indices),
|
|
indices,
|
|
cu_seqlens,
|
|
max_seqlen_in_batch,
|
|
)
|
|
|
|
|
|
def unpad_input_for_concatenated_sequences(hidden_states, attention_mask_in_length):
|
|
"""
|
|
Supports concatenating short samples in one sequence. The attention_mask_in_length is utilized to mask other short samples. It helps efficient training of variant lengths-based samples (e.g., the supervised fine-tuning task in large language model).
|
|
The motivation for this function is explained [here](https://github.com/Dao-AILab/flash-attention/issues/432#issuecomment-1668822286).
|
|
|
|
For example, if batch = 3 and seqlen = 6, the attention_mask_in_length is:
|
|
```
|
|
[
|
|
[2, 3, 0, 0, 0, 0],
|
|
[3, 2, 0, 0, 0, 0],
|
|
[6, 0, 0, 0, 0, 0]
|
|
]
|
|
```
|
|
, which refers to the 3D-attention mask:
|
|
```
|
|
[
|
|
[
|
|
[1, 0, 0, 0, 0, 0],
|
|
[1, 1, 0, 0, 0, 0],
|
|
[0, 0, 1, 0, 0, 0],
|
|
[0, 0, 1, 1, 0, 0],
|
|
[0, 0, 1, 1, 1, 0],
|
|
[0, 0, 0, 0, 0, 1]
|
|
],
|
|
[
|
|
[1, 0, 0, 0, 0, 0],
|
|
[1, 1, 0, 0, 0, 0],
|
|
[1, 1, 1, 0, 0, 0],
|
|
[0, 0, 0, 1, 0, 0],
|
|
[0, 0, 0, 1, 1, 0],
|
|
[0, 0, 0, 0, 0, 1]
|
|
],
|
|
[
|
|
[1, 0, 0, 0, 0, 0],
|
|
[1, 1, 0, 0, 0, 0],
|
|
[1, 1, 1, 0, 0, 0],
|
|
[1, 1, 1, 1, 0, 0],
|
|
[1, 1, 1, 1, 1, 0],
|
|
[1, 1, 1, 1, 1, 1]
|
|
]
|
|
]
|
|
```.
|
|
|
|
Arguments:
|
|
hidden_states: (batch, seqlen, ...)
|
|
attention_mask_in_length: (batch, seqlen), int, a nonzero number (e.g., 1, 2, 3, etc.) means length of concatenated sequence in b-th batch, and 0 means none.
|
|
Return:
|
|
hidden_states: (total_nnz, ...), where total_nnz = number of tokens in selected in attention_mask.
|
|
indices: (total_nnz), the indices of non-masked tokens from the flattened input sequence.
|
|
cu_seqlens: (batch + 1), the cumulative sequence lengths, used to index into hidden_states.
|
|
max_seqlen_in_batch: int
|
|
"""
|
|
length = attention_mask_in_length.sum(dim=-1)
|
|
seqlen = attention_mask_in_length.size(-1)
|
|
attention_mask_2d = torch.arange(
|
|
seqlen, device=length.device, dtype=length.dtype
|
|
).expand(len(length), seqlen) < length.unsqueeze(1)
|
|
real_indices_idx = torch.nonzero(
|
|
attention_mask_in_length.flatten(), as_tuple=False
|
|
).flatten()
|
|
seqlens_in_batch = attention_mask_in_length.flatten()[real_indices_idx]
|
|
indices = torch.nonzero(attention_mask_2d.flatten(), as_tuple=False).flatten()
|
|
max_seqlen_in_batch = seqlens_in_batch.max().item()
|
|
cu_seqlens = F.pad(
|
|
torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0)
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
return (
|
|
index_first_axis(rearrange(hidden_states, "b s ... -> (b s) ..."), indices),
|
|
indices,
|
|
cu_seqlens,
|
|
max_seqlen_in_batch,
|
|
)
|
|
|
|
|
|
def pad_input(hidden_states, indices, batch, seqlen):
|
|
"""
|
|
Arguments:
|
|
hidden_states: (total_nnz, ...), where total_nnz = number of tokens in selected in attention_mask.
|
|
indices: (total_nnz), the indices that represent the non-masked tokens of the original padded input sequence.
|
|
batch: int, batch size for the padded sequence.
|
|
seqlen: int, maximum sequence length for the padded sequence.
|
|
Return:
|
|
hidden_states: (batch, seqlen, ...)
|
|
"""
|
|
dim = hidden_states.shape[-1]
|
|
|
|
|
|
output = index_put_first_axis(hidden_states, indices, batch * seqlen)
|
|
return rearrange(output, "(b s) ... -> b s ...", b=batch)
|
|
|