|
|
|
|
|
|
|
|
|
|
|
import warnings
|
|
from typing import Any, List, Optional, Tuple, Union
|
|
|
|
import torch.utils.checkpoint
|
|
from peft import LoraConfig, get_peft_model
|
|
from torch import nn
|
|
from torch.nn import CrossEntropyLoss
|
|
from transformers import (AutoModel, GenerationConfig, LlamaForCausalLM,
|
|
LlamaTokenizer)
|
|
from transformers.modeling_outputs import CausalLMOutputWithPast
|
|
from transformers.modeling_utils import PreTrainedModel
|
|
from transformers.utils import ModelOutput, logging
|
|
|
|
from .configuration_internvl_chat import InternVLChatConfig
|
|
from .modeling_intern_vit import InternVisionModel
|
|
from .modeling_internlm2 import InternLM2ForCausalLM
|
|
|
|
logger = logging.get_logger(__name__)
|
|
|
|
|
|
class InternVLChatModel(PreTrainedModel):
|
|
config_class = InternVLChatConfig
|
|
main_input_name = 'pixel_values'
|
|
_no_split_modules = ['InternVisionEncoderLayer', 'LlamaDecoderLayer', 'InternLM2DecoderLayer']
|
|
|
|
def __init__(self, config: InternVLChatConfig, vision_model=None, language_model=None):
|
|
super().__init__(config)
|
|
|
|
image_size = config.force_image_size or config.vision_config.image_size
|
|
patch_size = config.vision_config.patch_size
|
|
self.patch_size = patch_size
|
|
self.select_layer = config.select_layer
|
|
self.template = config.template
|
|
self.num_image_token = int((image_size // patch_size) ** 2 * (config.downsample_ratio ** 2))
|
|
self.downsample_ratio = config.downsample_ratio
|
|
self.ps_version = config.ps_version
|
|
|
|
logger.info(f'num_image_token: {self.num_image_token}')
|
|
logger.info(f'ps_version: {self.ps_version}')
|
|
if vision_model is not None:
|
|
self.vision_model = vision_model
|
|
else:
|
|
self.vision_model = InternVisionModel(config.vision_config)
|
|
if language_model is not None:
|
|
self.language_model = language_model
|
|
else:
|
|
if config.llm_config.architectures[0] == 'LlamaForCausalLM':
|
|
self.language_model = LlamaForCausalLM(config.llm_config)
|
|
elif config.llm_config.architectures[0] == 'InternLM2ForCausalLM':
|
|
self.language_model = InternLM2ForCausalLM(config.llm_config)
|
|
else:
|
|
raise NotImplementedError(f'{config.llm_config.architectures[0]} is not implemented.')
|
|
|
|
vit_hidden_size = config.vision_config.hidden_size
|
|
llm_hidden_size = config.llm_config.hidden_size
|
|
|
|
self.mlp1 = nn.Sequential(
|
|
nn.LayerNorm(vit_hidden_size * int(1 / self.downsample_ratio) ** 2),
|
|
nn.Linear(vit_hidden_size * int(1 / self.downsample_ratio) ** 2, llm_hidden_size),
|
|
nn.GELU(),
|
|
nn.Linear(llm_hidden_size, llm_hidden_size)
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
self.img_context_token_id = None
|
|
self.neftune_alpha = None
|
|
|
|
if config.use_backbone_lora:
|
|
self.wrap_backbone_lora(r=config.use_backbone_lora, lora_alpha=2 * config.use_backbone_lora)
|
|
|
|
if config.use_llm_lora:
|
|
self.wrap_llm_lora(r=config.use_llm_lora, lora_alpha=2 * config.use_llm_lora)
|
|
|
|
def wrap_backbone_lora(self, r=128, lora_alpha=256, lora_dropout=0.05):
|
|
lora_config = LoraConfig(
|
|
r=r,
|
|
target_modules=['attn.qkv', 'attn.proj', 'mlp.fc1', 'mlp.fc2'],
|
|
lora_alpha=lora_alpha,
|
|
lora_dropout=lora_dropout,
|
|
)
|
|
self.vision_model = get_peft_model(self.vision_model, lora_config)
|
|
self.vision_model.print_trainable_parameters()
|
|
|
|
def wrap_llm_lora(self, r=128, lora_alpha=256, lora_dropout=0.05):
|
|
lora_config = LoraConfig(
|
|
r=r,
|
|
target_modules=['self_attn.q_proj', 'self_attn.k_proj', 'self_attn.v_proj', 'self_attn.o_proj',
|
|
'mlp.gate_proj', 'mlp.down_proj', 'mlp.up_proj'],
|
|
lora_alpha=lora_alpha,
|
|
lora_dropout=lora_dropout,
|
|
task_type='CAUSAL_LM'
|
|
)
|
|
self.language_model = get_peft_model(self.language_model, lora_config)
|
|
self.language_model.enable_input_require_grads()
|
|
self.language_model.print_trainable_parameters()
|
|
|
|
def forward(
|
|
self,
|
|
pixel_values: torch.FloatTensor,
|
|
input_ids: torch.LongTensor = None,
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
position_ids: Optional[torch.LongTensor] = None,
|
|
image_flags: Optional[torch.LongTensor] = None,
|
|
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
|
labels: Optional[torch.LongTensor] = None,
|
|
use_cache: Optional[bool] = None,
|
|
output_attentions: Optional[bool] = None,
|
|
output_hidden_states: Optional[bool] = None,
|
|
return_dict: Optional[bool] = None,
|
|
) -> Union[Tuple, CausalLMOutputWithPast]:
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
|
|
image_flags = image_flags.squeeze(-1)
|
|
input_embeds = self.language_model.get_input_embeddings()(input_ids)
|
|
|
|
vit_embeds = self.extract_feature(pixel_values)
|
|
vit_embeds = vit_embeds[image_flags == 1]
|
|
vit_batch_size = pixel_values.shape[0]
|
|
|
|
B, N, C = input_embeds.shape
|
|
input_embeds = input_embeds.reshape(B * N, C)
|
|
|
|
if torch.distributed.get_rank() == 0:
|
|
print(f'dynamic ViT batch size: {vit_batch_size}, images per sample: {vit_batch_size / B}, dynamic token length: {N}')
|
|
|
|
input_ids = input_ids.reshape(B * N)
|
|
selected = (input_ids == self.img_context_token_id)
|
|
try:
|
|
input_embeds[selected] = input_embeds[selected] * 0.0 + vit_embeds.reshape(-1, C)
|
|
except Exception as e:
|
|
vit_embeds = vit_embeds.reshape(-1, C)
|
|
print(f'warning: {e}, input_embeds[selected].shape={input_embeds[selected].shape}, '
|
|
f'vit_embeds.shape={vit_embeds.shape}')
|
|
n_token = selected.sum()
|
|
input_embeds[selected] = input_embeds[selected] * 0.0 + vit_embeds[:n_token]
|
|
|
|
input_embeds = input_embeds.reshape(B, N, C)
|
|
|
|
outputs = self.language_model(
|
|
inputs_embeds=input_embeds,
|
|
attention_mask=attention_mask,
|
|
position_ids=position_ids,
|
|
past_key_values=past_key_values,
|
|
use_cache=use_cache,
|
|
output_attentions=output_attentions,
|
|
output_hidden_states=output_hidden_states,
|
|
return_dict=return_dict,
|
|
)
|
|
logits = outputs.logits
|
|
|
|
loss = None
|
|
if labels is not None:
|
|
|
|
shift_logits = logits[..., :-1, :].contiguous()
|
|
shift_labels = labels[..., 1:].contiguous()
|
|
|
|
loss_fct = CrossEntropyLoss()
|
|
shift_logits = shift_logits.view(-1, self.language_model.config.vocab_size)
|
|
shift_labels = shift_labels.view(-1)
|
|
|
|
shift_labels = shift_labels.to(shift_logits.device)
|
|
loss = loss_fct(shift_logits, shift_labels)
|
|
|
|
if not return_dict:
|
|
output = (logits,) + outputs[1:]
|
|
return (loss,) + output if loss is not None else output
|
|
|
|
return CausalLMOutputWithPast(
|
|
loss=loss,
|
|
logits=logits,
|
|
past_key_values=outputs.past_key_values,
|
|
hidden_states=outputs.hidden_states,
|
|
attentions=outputs.attentions,
|
|
)
|
|
|
|
def pixel_shuffle(self, x, scale_factor=0.5):
|
|
n, w, h, c = x.size()
|
|
|
|
x = x.view(n, w, int(h * scale_factor), int(c / scale_factor))
|
|
|
|
x = x.permute(0, 2, 1, 3).contiguous()
|
|
|
|
x = x.view(n, int(h * scale_factor), int(w * scale_factor),
|
|
int(c / (scale_factor * scale_factor)))
|
|
if self.ps_version == 'v1':
|
|
warnings.warn("In ps_version 'v1', the height and width have not been swapped back, "
|
|
'which results in a transposed image.')
|
|
else:
|
|
x = x.permute(0, 2, 1, 3).contiguous()
|
|
return x
|
|
|
|
def noised_embed(self, vit_embeds, noise_alpha=5):
|
|
dims = torch.tensor(vit_embeds.size(1) * vit_embeds.size(2))
|
|
mag_norm = noise_alpha / torch.sqrt(dims)
|
|
noise = torch.zeros_like(vit_embeds).uniform_(-mag_norm, mag_norm)
|
|
return vit_embeds + noise
|
|
|
|
def extract_feature(self, pixel_values):
|
|
if self.select_layer == -1:
|
|
vit_embeds = self.vision_model(
|
|
pixel_values=pixel_values,
|
|
output_hidden_states=False,
|
|
return_dict=True).last_hidden_state
|
|
else:
|
|
vit_embeds = self.vision_model(
|
|
pixel_values=pixel_values,
|
|
output_hidden_states=True,
|
|
return_dict=True).hidden_states[self.select_layer]
|
|
vit_embeds = vit_embeds[:, 1:, :]
|
|
|
|
if self.training and self.neftune_alpha is not None:
|
|
vit_embeds = self.noised_embed(vit_embeds, self.neftune_alpha)
|
|
|
|
h = w = int(vit_embeds.shape[1] ** 0.5)
|
|
vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], h, w, -1)
|
|
vit_embeds = self.pixel_shuffle(vit_embeds, scale_factor=self.downsample_ratio)
|
|
vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], -1, vit_embeds.shape[-1])
|
|
vit_embeds = self.mlp1(vit_embeds)
|
|
return vit_embeds
|
|
|
|
def batch_chat(self, tokenizer, pixel_values, image_counts, questions, generation_config, history=None,
|
|
return_history=False, IMG_START_TOKEN='<img>', IMG_END_TOKEN='</img>',
|
|
IMG_CONTEXT_TOKEN='<IMG_CONTEXT>'):
|
|
if history is not None or return_history:
|
|
print('Now multi-turn chat is not supported in batch_chat.')
|
|
raise NotImplementedError
|
|
img_context_token_id = tokenizer.convert_tokens_to_ids(IMG_CONTEXT_TOKEN)
|
|
self.img_context_token_id = img_context_token_id
|
|
|
|
from .conversation import get_conv_template
|
|
|
|
queries = []
|
|
image_bs = pixel_values.shape[0]
|
|
|
|
for idx, image_count in enumerate(image_counts):
|
|
image_token = IMG_START_TOKEN + IMG_CONTEXT_TOKEN * self.num_image_token * image_count + IMG_END_TOKEN
|
|
question = image_token + '\n' + questions[idx]
|
|
template = get_conv_template(self.template)
|
|
template.append_message(template.roles[0], question)
|
|
template.append_message(template.roles[1], None)
|
|
query = template.get_prompt()
|
|
queries.append(query)
|
|
tokenizer.padding_side = 'left'
|
|
model_inputs = tokenizer(queries, return_tensors='pt', padding=True)
|
|
input_ids = model_inputs['input_ids'].cuda()
|
|
attention_mask = model_inputs['attention_mask'].cuda()
|
|
eos_token_id = tokenizer.convert_tokens_to_ids(template.sep)
|
|
generation_config['eos_token_id'] = eos_token_id
|
|
|
|
generation_output = self.generate(
|
|
pixel_values=pixel_values,
|
|
input_ids=input_ids,
|
|
attention_mask=attention_mask,
|
|
**generation_config
|
|
)
|
|
responses = tokenizer.batch_decode(generation_output, skip_special_tokens=True)
|
|
responses = [response.split(template.sep)[0].strip() for response in responses]
|
|
return responses
|
|
|
|
def chat(self, tokenizer, pixel_values, question, generation_config, history=None, return_history=False,
|
|
IMG_START_TOKEN='<img>', IMG_END_TOKEN='</img>', IMG_CONTEXT_TOKEN='<IMG_CONTEXT>'):
|
|
|
|
img_context_token_id = tokenizer.convert_tokens_to_ids(IMG_CONTEXT_TOKEN)
|
|
self.img_context_token_id = img_context_token_id
|
|
|
|
from .conversation import get_conv_template
|
|
|
|
template = get_conv_template(self.template)
|
|
image_bs = pixel_values.shape[0]
|
|
print(f'dynamic ViT batch size: {image_bs}')
|
|
if history is None:
|
|
history = []
|
|
image_tokens = IMG_START_TOKEN + IMG_CONTEXT_TOKEN * self.num_image_token * image_bs + IMG_END_TOKEN
|
|
question = image_tokens + '\n' + question
|
|
else:
|
|
for (old_question, old_answer) in history:
|
|
template.append_message(template.roles[0], old_question)
|
|
template.append_message(template.roles[1], old_answer)
|
|
template.append_message(template.roles[0], question)
|
|
template.append_message(template.roles[1], None)
|
|
query = template.get_prompt()
|
|
model_inputs = tokenizer(query, return_tensors='pt')
|
|
input_ids = model_inputs['input_ids'].cuda()
|
|
attention_mask = model_inputs['attention_mask'].cuda()
|
|
eos_token_id = tokenizer.convert_tokens_to_ids(template.sep)
|
|
generation_config['eos_token_id'] = eos_token_id
|
|
|
|
generation_output = self.generate(
|
|
pixel_values=pixel_values,
|
|
input_ids=input_ids,
|
|
attention_mask=attention_mask,
|
|
**generation_config
|
|
)
|
|
response = tokenizer.batch_decode(generation_output, skip_special_tokens=True)[0]
|
|
response = response.split(template.sep)[0].strip()
|
|
history.append((question, response))
|
|
if return_history:
|
|
return response, history
|
|
else:
|
|
|
|
|
|
return response
|
|
return response
|
|
|
|
@torch.no_grad()
|
|
def generate(
|
|
self,
|
|
pixel_values: Optional[torch.FloatTensor] = None,
|
|
input_ids: Optional[torch.FloatTensor] = None,
|
|
attention_mask: Optional[torch.LongTensor] = None,
|
|
visual_features: Optional[torch.FloatTensor] = None,
|
|
generation_config: Optional[GenerationConfig] = None,
|
|
output_hidden_states: Optional[bool] = None,
|
|
return_dict: Optional[bool] = None,
|
|
**generate_kwargs,
|
|
) -> torch.LongTensor:
|
|
|
|
assert self.img_context_token_id is not None
|
|
if pixel_values is not None:
|
|
if visual_features is not None:
|
|
vit_embeds = visual_features
|
|
else:
|
|
vit_embeds = self.extract_feature(pixel_values)
|
|
input_embeds = self.language_model.get_input_embeddings()(input_ids)
|
|
B, N, C = input_embeds.shape
|
|
input_embeds = input_embeds.reshape(B * N, C)
|
|
|
|
input_ids = input_ids.reshape(B * N)
|
|
selected = (input_ids == self.img_context_token_id)
|
|
assert selected.sum() != 0
|
|
input_embeds[selected] = vit_embeds.reshape(-1, C).to(input_embeds.device)
|
|
|
|
input_embeds = input_embeds.reshape(B, N, C)
|
|
else:
|
|
input_embeds = self.language_model.get_input_embeddings()(input_ids)
|
|
|
|
outputs = self.language_model.generate(
|
|
inputs_embeds=input_embeds,
|
|
attention_mask=attention_mask,
|
|
generation_config=generation_config,
|
|
output_hidden_states=output_hidden_states,
|
|
return_dict=return_dict,
|
|
use_cache=True,
|
|
**generate_kwargs,
|
|
)
|
|
|
|
return outputs
|
|
|