raedinkhaled commited on
Commit
b5ecb1e
·
1 Parent(s): 2a72784

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +85 -0
README.md ADDED
@@ -0,0 +1,85 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - imagefolder
7
+ metrics:
8
+ - accuracy
9
+ model-index:
10
+ - name: vit-base-mri
11
+ results:
12
+ - task:
13
+ name: Image Classification
14
+ type: image-classification
15
+ dataset:
16
+ name: imagefolder
17
+ type: imagefolder
18
+ args: default
19
+ metrics:
20
+ - name: Accuracy
21
+ type: accuracy
22
+ value: 0.987944228954817
23
+ ---
24
+
25
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
26
+ should probably proofread and complete it, then remove this comment. -->
27
+
28
+ # vit-base-mri
29
+
30
+ This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset.
31
+ It achieves the following results on the evaluation set:
32
+ - Loss: 0.0690
33
+ - Accuracy: 0.9879
34
+
35
+ ## Model description
36
+
37
+ More information needed
38
+
39
+ ## Intended uses & limitations
40
+
41
+ More information needed
42
+
43
+ ## Training and evaluation data
44
+
45
+ More information needed
46
+
47
+ ## Training procedure
48
+
49
+ ### Training hyperparameters
50
+
51
+ The following hyperparameters were used during training:
52
+ - learning_rate: 3e-05
53
+ - train_batch_size: 32
54
+ - eval_batch_size: 8
55
+ - seed: 42
56
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
57
+ - lr_scheduler_type: linear
58
+ - num_epochs: 4
59
+ - mixed_precision_training: Native AMP
60
+
61
+ ### Training results
62
+
63
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
64
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
65
+ | 0.04 | 0.3 | 500 | 0.0828 | 0.9690 |
66
+ | 0.0765 | 0.59 | 1000 | 0.0623 | 0.9750 |
67
+ | 0.0479 | 0.89 | 1500 | 0.0453 | 0.9827 |
68
+ | 0.0199 | 1.18 | 2000 | 0.0524 | 0.9857 |
69
+ | 0.0114 | 1.48 | 2500 | 0.0484 | 0.9861 |
70
+ | 0.008 | 1.78 | 3000 | 0.0566 | 0.9852 |
71
+ | 0.0051 | 2.07 | 3500 | 0.0513 | 0.9874 |
72
+ | 0.0008 | 2.37 | 4000 | 0.0617 | 0.9874 |
73
+ | 0.0021 | 2.66 | 4500 | 0.0664 | 0.9870 |
74
+ | 0.0005 | 2.96 | 5000 | 0.0639 | 0.9872 |
75
+ | 0.001 | 3.25 | 5500 | 0.0644 | 0.9879 |
76
+ | 0.0004 | 3.55 | 6000 | 0.0672 | 0.9875 |
77
+ | 0.0003 | 3.85 | 6500 | 0.0690 | 0.9879 |
78
+
79
+
80
+ ### Framework versions
81
+
82
+ - Transformers 4.20.0
83
+ - Pytorch 1.11.0+cu113
84
+ - Datasets 2.3.2
85
+ - Tokenizers 0.12.1