raedinkhaled
commited on
Commit
·
b5ecb1e
1
Parent(s):
2a72784
update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
datasets:
|
6 |
+
- imagefolder
|
7 |
+
metrics:
|
8 |
+
- accuracy
|
9 |
+
model-index:
|
10 |
+
- name: vit-base-mri
|
11 |
+
results:
|
12 |
+
- task:
|
13 |
+
name: Image Classification
|
14 |
+
type: image-classification
|
15 |
+
dataset:
|
16 |
+
name: imagefolder
|
17 |
+
type: imagefolder
|
18 |
+
args: default
|
19 |
+
metrics:
|
20 |
+
- name: Accuracy
|
21 |
+
type: accuracy
|
22 |
+
value: 0.987944228954817
|
23 |
+
---
|
24 |
+
|
25 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
26 |
+
should probably proofread and complete it, then remove this comment. -->
|
27 |
+
|
28 |
+
# vit-base-mri
|
29 |
+
|
30 |
+
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset.
|
31 |
+
It achieves the following results on the evaluation set:
|
32 |
+
- Loss: 0.0690
|
33 |
+
- Accuracy: 0.9879
|
34 |
+
|
35 |
+
## Model description
|
36 |
+
|
37 |
+
More information needed
|
38 |
+
|
39 |
+
## Intended uses & limitations
|
40 |
+
|
41 |
+
More information needed
|
42 |
+
|
43 |
+
## Training and evaluation data
|
44 |
+
|
45 |
+
More information needed
|
46 |
+
|
47 |
+
## Training procedure
|
48 |
+
|
49 |
+
### Training hyperparameters
|
50 |
+
|
51 |
+
The following hyperparameters were used during training:
|
52 |
+
- learning_rate: 3e-05
|
53 |
+
- train_batch_size: 32
|
54 |
+
- eval_batch_size: 8
|
55 |
+
- seed: 42
|
56 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
57 |
+
- lr_scheduler_type: linear
|
58 |
+
- num_epochs: 4
|
59 |
+
- mixed_precision_training: Native AMP
|
60 |
+
|
61 |
+
### Training results
|
62 |
+
|
63 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
64 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
65 |
+
| 0.04 | 0.3 | 500 | 0.0828 | 0.9690 |
|
66 |
+
| 0.0765 | 0.59 | 1000 | 0.0623 | 0.9750 |
|
67 |
+
| 0.0479 | 0.89 | 1500 | 0.0453 | 0.9827 |
|
68 |
+
| 0.0199 | 1.18 | 2000 | 0.0524 | 0.9857 |
|
69 |
+
| 0.0114 | 1.48 | 2500 | 0.0484 | 0.9861 |
|
70 |
+
| 0.008 | 1.78 | 3000 | 0.0566 | 0.9852 |
|
71 |
+
| 0.0051 | 2.07 | 3500 | 0.0513 | 0.9874 |
|
72 |
+
| 0.0008 | 2.37 | 4000 | 0.0617 | 0.9874 |
|
73 |
+
| 0.0021 | 2.66 | 4500 | 0.0664 | 0.9870 |
|
74 |
+
| 0.0005 | 2.96 | 5000 | 0.0639 | 0.9872 |
|
75 |
+
| 0.001 | 3.25 | 5500 | 0.0644 | 0.9879 |
|
76 |
+
| 0.0004 | 3.55 | 6000 | 0.0672 | 0.9875 |
|
77 |
+
| 0.0003 | 3.85 | 6500 | 0.0690 | 0.9879 |
|
78 |
+
|
79 |
+
|
80 |
+
### Framework versions
|
81 |
+
|
82 |
+
- Transformers 4.20.0
|
83 |
+
- Pytorch 1.11.0+cu113
|
84 |
+
- Datasets 2.3.2
|
85 |
+
- Tokenizers 0.12.1
|