File size: 10,060 Bytes
f7499c0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 |
from transformers import ConditionalDetrImageProcessor, TrOCRProcessor, ViTImageProcessor
import torch
from typing import List
from shapely.geometry import box
from .utils import x1y1x2y2_to_xywh
import numpy as np
class Magiv2Processor():
def __init__(self, config):
self.config = config
self.detection_image_preprocessor = None
self.ocr_preprocessor = None
self.crop_embedding_image_preprocessor = None
if not config.disable_detections:
assert config.detection_image_preprocessing_config is not None
self.detection_image_preprocessor = ConditionalDetrImageProcessor.from_dict(config.detection_image_preprocessing_config)
if not config.disable_ocr:
assert config.ocr_pretrained_processor_path is not None
self.ocr_preprocessor = TrOCRProcessor.from_pretrained(config.ocr_pretrained_processor_path)
if not config.disable_crop_embeddings:
assert config.crop_embedding_image_preprocessing_config is not None
self.crop_embedding_image_preprocessor = ViTImageProcessor.from_dict(config.crop_embedding_image_preprocessing_config)
def preprocess_inputs_for_detection(self, images, annotations=None):
images = list(images)
assert isinstance(images[0], np.ndarray)
annotations = self._convert_annotations_to_coco_format(annotations)
inputs = self.detection_image_preprocessor(images, annotations=annotations, return_tensors="pt")
return inputs
def preprocess_inputs_for_ocr(self, images):
images = list(images)
assert isinstance(images[0], np.ndarray)
return self.ocr_preprocessor(images, return_tensors="pt").pixel_values
def preprocess_inputs_for_crop_embeddings(self, images):
images = list(images)
assert isinstance(images[0], np.ndarray)
return self.crop_embedding_image_preprocessor(images, return_tensors="pt").pixel_values
def postprocess_ocr_tokens(self, generated_ids, skip_special_tokens=True):
return self.ocr_preprocessor.batch_decode(generated_ids, skip_special_tokens=skip_special_tokens)
def crop_image(self, image, bboxes):
crops_for_image = []
for bbox in bboxes:
x1, y1, x2, y2 = bbox
# fix the bounding box in case it is out of bounds or too small
x1, y1, x2, y2 = int(x1), int(y1), int(x2), int(y2)
x1, y1, x2, y2 = min(x1, x2), min(y1, y2), max(x1, x2), max(y1, y2) # just incase
x1, y1 = max(0, x1), max(0, y1)
x1, y1 = min(image.shape[1], x1), min(image.shape[0], y1)
x2, y2 = max(0, x2), max(0, y2)
x2, y2 = min(image.shape[1], x2), min(image.shape[0], y2)
if x2 - x1 < 10:
if image.shape[1] - x1 > 10:
x2 = x1 + 10
else:
x1 = x2 - 10
if y2 - y1 < 10:
if image.shape[0] - y1 > 10:
y2 = y1 + 10
else:
y1 = y2 - 10
crop = image[y1:y2, x1:x2]
crops_for_image.append(crop)
return crops_for_image
def _get_indices_of_characters_to_keep(self, batch_scores, batch_labels, batch_bboxes, character_detection_threshold):
indices_of_characters_to_keep = []
for scores, labels, _ in zip(batch_scores, batch_labels, batch_bboxes):
indices = torch.where((labels == 0) & (scores > character_detection_threshold))[0]
indices_of_characters_to_keep.append(indices)
return indices_of_characters_to_keep
def _get_indices_of_panels_to_keep(self, batch_scores, batch_labels, batch_bboxes, panel_detection_threshold):
indices_of_panels_to_keep = []
for scores, labels, bboxes in zip(batch_scores, batch_labels, batch_bboxes):
indices = torch.where(labels == 2)[0]
bboxes = bboxes[indices]
scores = scores[indices]
labels = labels[indices]
if len(indices) == 0:
indices_of_panels_to_keep.append([])
continue
scores, labels, indices, bboxes = zip(*sorted(zip(scores, labels, indices, bboxes), reverse=True))
panels_to_keep = []
union_of_panels_so_far = box(0, 0, 0, 0)
for ps, pb, pl, pi in zip(scores, bboxes, labels, indices):
panel_polygon = box(pb[0], pb[1], pb[2], pb[3])
if ps < panel_detection_threshold:
continue
if union_of_panels_so_far.intersection(panel_polygon).area / panel_polygon.area > 0.5:
continue
panels_to_keep.append((ps, pl, pb, pi))
union_of_panels_so_far = union_of_panels_so_far.union(panel_polygon)
indices_of_panels_to_keep.append([p[3].item() for p in panels_to_keep])
return indices_of_panels_to_keep
def _get_indices_of_texts_to_keep(self, batch_scores, batch_labels, batch_bboxes, text_detection_threshold):
indices_of_texts_to_keep = []
for scores, labels, bboxes in zip(batch_scores, batch_labels, batch_bboxes):
indices = torch.where((labels == 1) & (scores > text_detection_threshold))[0]
bboxes = bboxes[indices]
scores = scores[indices]
labels = labels[indices]
if len(indices) == 0:
indices_of_texts_to_keep.append([])
continue
scores, labels, indices, bboxes = zip(*sorted(zip(scores, labels, indices, bboxes), reverse=True))
texts_to_keep = []
texts_to_keep_as_shapely_objects = []
for ts, tb, tl, ti in zip(scores, bboxes, labels, indices):
text_polygon = box(tb[0], tb[1], tb[2], tb[3])
should_append = True
for t in texts_to_keep_as_shapely_objects:
if t.intersection(text_polygon).area / t.union(text_polygon).area > 0.5:
should_append = False
break
if should_append:
texts_to_keep.append((ts, tl, tb, ti))
texts_to_keep_as_shapely_objects.append(text_polygon)
indices_of_texts_to_keep.append([t[3].item() for t in texts_to_keep])
return indices_of_texts_to_keep
def _get_indices_of_tails_to_keep(self, batch_scores, batch_labels, batch_bboxes, text_detection_threshold):
indices_of_texts_to_keep = []
for scores, labels, bboxes in zip(batch_scores, batch_labels, batch_bboxes):
indices = torch.where((labels == 3) & (scores > text_detection_threshold))[0]
bboxes = bboxes[indices]
scores = scores[indices]
labels = labels[indices]
if len(indices) == 0:
indices_of_texts_to_keep.append([])
continue
scores, labels, indices, bboxes = zip(*sorted(zip(scores, labels, indices, bboxes), reverse=True))
texts_to_keep = []
texts_to_keep_as_shapely_objects = []
for ts, tb, tl, ti in zip(scores, bboxes, labels, indices):
text_polygon = box(tb[0], tb[1], tb[2], tb[3])
should_append = True
for t in texts_to_keep_as_shapely_objects:
if t.intersection(text_polygon).area / t.union(text_polygon).area > 0.5:
should_append = False
break
if should_append:
texts_to_keep.append((ts, tl, tb, ti))
texts_to_keep_as_shapely_objects.append(text_polygon)
indices_of_texts_to_keep.append([t[3].item() for t in texts_to_keep])
return indices_of_texts_to_keep
def _convert_annotations_to_coco_format(self, annotations):
if annotations is None:
return None
self._verify_annotations_are_in_correct_format(annotations)
coco_annotations = []
for annotation in annotations:
coco_annotation = {
"image_id": annotation["image_id"],
"annotations": [],
}
for bbox, label in zip(annotation["bboxes_as_x1y1x2y2"], annotation["labels"]):
coco_annotation["annotations"].append({
"bbox": x1y1x2y2_to_xywh(bbox),
"category_id": label,
"area": (bbox[2] - bbox[0]) * (bbox[3] - bbox[1]),
})
coco_annotations.append(coco_annotation)
return coco_annotations
def _verify_annotations_are_in_correct_format(self, annotations):
error_msg = """
Annotations must be in the following format:
[
{
"image_id": 0,
"bboxes_as_x1y1x2y2": [[0, 0, 10, 10], [10, 10, 20, 20], [20, 20, 30, 30]],
"labels": [0, 1, 2],
},
...
]
Labels: 0 for characters, 1 for text, 2 for panels.
"""
if annotations is None:
return
if not isinstance(annotations, List) and not isinstance(annotations, tuple):
raise ValueError(
f"{error_msg} Expected a List/Tuple, found {type(annotations)}."
)
if len(annotations) == 0:
return
if not isinstance(annotations[0], dict):
raise ValueError(
f"{error_msg} Expected a List[Dicct], found {type(annotations[0])}."
)
if "image_id" not in annotations[0]:
raise ValueError(
f"{error_msg} Dict must contain 'image_id'."
)
if "bboxes_as_x1y1x2y2" not in annotations[0]:
raise ValueError(
f"{error_msg} Dict must contain 'bboxes_as_x1y1x2y2'."
)
if "labels" not in annotations[0]:
raise ValueError(
f"{error_msg} Dict must contain 'labels'."
)
|