|
from transformers import PreTrainedModel, VisionEncoderDecoderModel, ViTMAEModel, ConditionalDetrModel |
|
from transformers.models.conditional_detr.modeling_conditional_detr import ( |
|
ConditionalDetrMLPPredictionHead, |
|
ConditionalDetrModelOutput, |
|
ConditionalDetrHungarianMatcher, |
|
inverse_sigmoid, |
|
) |
|
from .configuration_magiv2 import Magiv2Config |
|
from .processing_magiv2 import Magiv2Processor |
|
from torch import nn |
|
from typing import Optional, List |
|
import torch |
|
from einops import rearrange, repeat |
|
from .utils import move_to_device, visualise_single_image_prediction, sort_panels, sort_text_boxes_in_reading_order |
|
from transformers.image_transforms import center_to_corners_format |
|
from .utils import UnionFind, sort_panels, sort_text_boxes_in_reading_order |
|
import pulp |
|
import scipy |
|
import numpy as np |
|
|
|
class Magiv2Model(PreTrainedModel): |
|
config_class = Magiv2Config |
|
|
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.config = config |
|
self.processor = Magiv2Processor(config) |
|
if not config.disable_ocr: |
|
self.ocr_model = VisionEncoderDecoderModel(config.ocr_model_config) |
|
if not config.disable_crop_embeddings: |
|
self.crop_embedding_model = ViTMAEModel(config.crop_embedding_model_config) |
|
if not config.disable_detections: |
|
self.num_non_obj_tokens = 5 |
|
self.detection_transformer = ConditionalDetrModel(config.detection_model_config) |
|
self.bbox_predictor = ConditionalDetrMLPPredictionHead( |
|
input_dim=config.detection_model_config.d_model, |
|
hidden_dim=config.detection_model_config.d_model, |
|
output_dim=4, num_layers=3 |
|
) |
|
self.character_character_matching_head = ConditionalDetrMLPPredictionHead( |
|
input_dim = 3 * config.detection_model_config.d_model + (2 * config.crop_embedding_model_config.hidden_size if not config.disable_crop_embeddings else 0), |
|
hidden_dim=config.detection_model_config.d_model, |
|
output_dim=1, num_layers=3 |
|
) |
|
self.text_character_matching_head = ConditionalDetrMLPPredictionHead( |
|
input_dim = 3 * config.detection_model_config.d_model, |
|
hidden_dim=config.detection_model_config.d_model, |
|
output_dim=1, num_layers=3 |
|
) |
|
self.text_tail_matching_head = ConditionalDetrMLPPredictionHead( |
|
input_dim = 2 * config.detection_model_config.d_model, |
|
hidden_dim=config.detection_model_config.d_model, |
|
output_dim=1, num_layers=3 |
|
) |
|
self.class_labels_classifier = nn.Linear( |
|
config.detection_model_config.d_model, config.detection_model_config.num_labels |
|
) |
|
self.is_this_text_a_dialogue = nn.Linear( |
|
config.detection_model_config.d_model, 1 |
|
) |
|
self.matcher = ConditionalDetrHungarianMatcher( |
|
class_cost=config.detection_model_config.class_cost, |
|
bbox_cost=config.detection_model_config.bbox_cost, |
|
giou_cost=config.detection_model_config.giou_cost |
|
) |
|
|
|
def move_to_device(self, input): |
|
return move_to_device(input, self.device) |
|
|
|
@torch.no_grad() |
|
def do_chapter_wide_prediction(self, pages_in_order, character_bank, eta=0.75, batch_size=8, use_tqdm=False, do_ocr=True): |
|
texts = [] |
|
characters = [] |
|
character_clusters = [] |
|
if use_tqdm: |
|
from tqdm import tqdm |
|
iterator = tqdm(range(0, len(pages_in_order), batch_size)) |
|
else: |
|
iterator = range(0, len(pages_in_order), batch_size) |
|
per_page_results = [] |
|
for i in iterator: |
|
pages = pages_in_order[i:i+batch_size] |
|
results = self.predict_detections_and_associations(pages) |
|
per_page_results.extend([result for result in results]) |
|
|
|
texts = [result["texts"] for result in per_page_results] |
|
characters = [result["characters"] for result in per_page_results] |
|
character_clusters = [result["character_cluster_labels"] for result in per_page_results] |
|
assigned_character_names = self.assign_names_to_characters(pages_in_order, characters, character_bank, character_clusters, eta=eta) |
|
if do_ocr: |
|
ocr = self.predict_ocr(pages_in_order, texts, use_tqdm=use_tqdm) |
|
offset_characters = 0 |
|
iteration_over = zip(per_page_results, ocr) if do_ocr else per_page_results |
|
for iter in iteration_over: |
|
if do_ocr: |
|
result, ocr_for_page = iter |
|
result["ocr"] = ocr_for_page |
|
else: |
|
result = iter |
|
result["character_names"] = assigned_character_names[offset_characters:offset_characters + len(result["characters"])] |
|
offset_characters += len(result["characters"]) |
|
return per_page_results |
|
|
|
|
|
def assign_names_to_characters(self, images, character_bboxes, character_bank, character_clusters, eta=0.75): |
|
chapter_wide_char_embeddings = self.predict_crop_embeddings(images, character_bboxes) |
|
chapter_wide_char_embeddings = torch.cat(chapter_wide_char_embeddings, dim=0) |
|
chapter_wide_char_embeddings = torch.nn.functional.normalize(chapter_wide_char_embeddings, p=2, dim=1).cpu().numpy() |
|
|
|
must_link = [] |
|
cannot_link = [] |
|
offset = 0 |
|
for clusters_per_image in character_clusters: |
|
for i in range(len(clusters_per_image)): |
|
for j in range(i+1, len(clusters_per_image)): |
|
if clusters_per_image[i] == clusters_per_image[j]: |
|
must_link.append((offset + i, offset + j)) |
|
else: |
|
cannot_link.append((offset + i, offset + j)) |
|
offset += len(clusters_per_image) |
|
character_bank_for_this_chapter = self.predict_crop_embeddings(character_bank["images"], [[[0, 0, x.shape[1], x.shape[0]]] for x in character_bank["images"]]) |
|
character_bank_for_this_chapter = torch.cat(character_bank_for_this_chapter, dim=0) |
|
character_bank_for_this_chapter = torch.nn.functional.normalize(character_bank_for_this_chapter, p=2, dim=1).cpu().numpy() |
|
costs = scipy.spatial.distance.cdist(chapter_wide_char_embeddings, character_bank_for_this_chapter) |
|
none_of_the_above = eta * np.ones((costs.shape[0],1)) |
|
costs = np.concatenate([costs, none_of_the_above], axis=1) |
|
sense = pulp.LpMinimize |
|
num_supply, num_demand = costs.shape |
|
problem = pulp.LpProblem("Optimal_Transport_Problem", sense) |
|
x = pulp.LpVariable.dicts("x", ((i, j) for i in range(num_supply) for j in range(num_demand)), cat='Binary') |
|
|
|
problem += pulp.lpSum([costs[i][j] * x[(i, j)] for i in range(num_supply) for j in range(num_demand)]) |
|
|
|
for i in range(num_supply): |
|
problem += pulp.lpSum([x[(i, j)] for j in range(num_demand)]) == 1, f"Supply_{i}_Total_Assignment" |
|
|
|
for j in range(num_demand-1): |
|
for (s1, s2) in cannot_link: |
|
problem += x[(s1, j)] + x[(s2, j)] <= 1, f"Exclusion_{s1}_{s2}_Demand_{j}" |
|
|
|
for j in range(num_demand): |
|
for (s1, s2) in must_link: |
|
problem += x[(s1, j)] - x[(s2, j)] == 0, f"Inclusion_{s1}_{s2}_Demand_{j}" |
|
problem.solve() |
|
assignments = [] |
|
for v in problem.variables(): |
|
if v.varValue > 0: |
|
index, assignment = v.name.split("(")[1].split(")")[0].split(",") |
|
assignment = assignment[1:] |
|
assignments.append((int(index), int(assignment))) |
|
|
|
labels = np.zeros(num_supply) |
|
for i, j in assignments: |
|
labels[i] = j |
|
|
|
return [character_bank["names"][int(i)] if i < len(character_bank["names"]) else "Other" for i in labels] |
|
|
|
|
|
def predict_detections_and_associations( |
|
self, |
|
images, |
|
move_to_device_fn=None, |
|
character_detection_threshold=0.3, |
|
panel_detection_threshold=0.2, |
|
text_detection_threshold=0.3, |
|
tail_detection_threshold=0.34, |
|
character_character_matching_threshold=0.65, |
|
text_character_matching_threshold=0.35, |
|
text_tail_matching_threshold=0.3, |
|
text_classification_threshold=0.5, |
|
): |
|
assert not self.config.disable_detections |
|
move_to_device_fn = self.move_to_device if move_to_device_fn is None else move_to_device_fn |
|
|
|
inputs_to_detection_transformer = self.processor.preprocess_inputs_for_detection(images) |
|
inputs_to_detection_transformer = move_to_device_fn(inputs_to_detection_transformer) |
|
|
|
detection_transformer_output = self._get_detection_transformer_output(**inputs_to_detection_transformer) |
|
predicted_class_scores, predicted_bboxes = self._get_predicted_bboxes_and_classes(detection_transformer_output) |
|
|
|
original_image_sizes = torch.stack([torch.tensor(img.shape[:2]) for img in images], dim=0).to(predicted_bboxes.device) |
|
|
|
batch_scores, batch_labels = predicted_class_scores.max(-1) |
|
batch_scores = batch_scores.sigmoid() |
|
batch_labels = batch_labels.long() |
|
batch_bboxes = center_to_corners_format(predicted_bboxes) |
|
|
|
|
|
if isinstance(original_image_sizes, List): |
|
img_h = torch.Tensor([i[0] for i in original_image_sizes]) |
|
img_w = torch.Tensor([i[1] for i in original_image_sizes]) |
|
else: |
|
img_h, img_w = original_image_sizes.unbind(1) |
|
scale_fct = torch.stack([img_w, img_h, img_w, img_h], dim=1).to(batch_bboxes.device) |
|
batch_bboxes = batch_bboxes * scale_fct[:, None, :] |
|
|
|
batch_panel_indices = self.processor._get_indices_of_panels_to_keep(batch_scores, batch_labels, batch_bboxes, panel_detection_threshold) |
|
batch_character_indices = self.processor._get_indices_of_characters_to_keep(batch_scores, batch_labels, batch_bboxes, character_detection_threshold) |
|
batch_text_indices = self.processor._get_indices_of_texts_to_keep(batch_scores, batch_labels, batch_bboxes, text_detection_threshold) |
|
batch_tail_indices = self.processor._get_indices_of_tails_to_keep(batch_scores, batch_labels, batch_bboxes, tail_detection_threshold) |
|
|
|
predicted_obj_tokens_for_batch = self._get_predicted_obj_tokens(detection_transformer_output) |
|
predicted_t2c_tokens_for_batch = self._get_predicted_t2c_tokens(detection_transformer_output) |
|
predicted_c2c_tokens_for_batch = self._get_predicted_c2c_tokens(detection_transformer_output) |
|
|
|
text_character_affinity_matrices = self._get_text_character_affinity_matrices( |
|
character_obj_tokens_for_batch=[x[i] for x, i in zip(predicted_obj_tokens_for_batch, batch_character_indices)], |
|
text_obj_tokens_for_this_batch=[x[i] for x, i in zip(predicted_obj_tokens_for_batch, batch_text_indices)], |
|
t2c_tokens_for_batch=predicted_t2c_tokens_for_batch, |
|
apply_sigmoid=True, |
|
) |
|
|
|
character_bboxes_in_batch = [batch_bboxes[i][j] for i, j in enumerate(batch_character_indices)] |
|
character_character_affinity_matrices = self._get_character_character_affinity_matrices( |
|
character_obj_tokens_for_batch=[x[i] for x, i in zip(predicted_obj_tokens_for_batch, batch_character_indices)], |
|
crop_embeddings_for_batch=self.predict_crop_embeddings(images, character_bboxes_in_batch, move_to_device_fn), |
|
c2c_tokens_for_batch=predicted_c2c_tokens_for_batch, |
|
apply_sigmoid=True, |
|
) |
|
|
|
text_tail_affinity_matrices = self._get_text_tail_affinity_matrices( |
|
text_obj_tokens_for_this_batch=[x[i] for x, i in zip(predicted_obj_tokens_for_batch, batch_text_indices)], |
|
tail_obj_tokens_for_batch=[x[i] for x, i in zip(predicted_obj_tokens_for_batch, batch_tail_indices)], |
|
apply_sigmoid=True, |
|
) |
|
|
|
is_this_text_a_dialogue = self._get_text_classification([x[i] for x, i in zip(predicted_obj_tokens_for_batch, batch_text_indices)]) |
|
|
|
results = [] |
|
for batch_index in range(len(batch_scores)): |
|
panel_indices = batch_panel_indices[batch_index] |
|
character_indices = batch_character_indices[batch_index] |
|
text_indices = batch_text_indices[batch_index] |
|
tail_indices = batch_tail_indices[batch_index] |
|
|
|
character_bboxes = batch_bboxes[batch_index][character_indices] |
|
panel_bboxes = batch_bboxes[batch_index][panel_indices] |
|
text_bboxes = batch_bboxes[batch_index][text_indices] |
|
tail_bboxes = batch_bboxes[batch_index][tail_indices] |
|
|
|
local_sorted_panel_indices = sort_panels(panel_bboxes) |
|
panel_bboxes = panel_bboxes[local_sorted_panel_indices] |
|
local_sorted_text_indices = sort_text_boxes_in_reading_order(text_bboxes, panel_bboxes) |
|
text_bboxes = text_bboxes[local_sorted_text_indices] |
|
|
|
character_character_matching_scores = character_character_affinity_matrices[batch_index] |
|
text_character_matching_scores = text_character_affinity_matrices[batch_index][local_sorted_text_indices] |
|
text_tail_matching_scores = text_tail_affinity_matrices[batch_index][local_sorted_text_indices] |
|
|
|
is_essential_text = is_this_text_a_dialogue[batch_index][local_sorted_text_indices] > text_classification_threshold |
|
character_cluster_labels = UnionFind.from_adj_matrix( |
|
character_character_matching_scores > character_character_matching_threshold |
|
).get_labels_for_connected_components() |
|
|
|
if 0 in text_character_matching_scores.shape: |
|
text_character_associations = torch.zeros((0, 2), dtype=torch.long) |
|
else: |
|
most_likely_speaker_for_each_text = torch.argmax(text_character_matching_scores, dim=1) |
|
text_indices = torch.arange(len(text_bboxes)).type_as(most_likely_speaker_for_each_text) |
|
text_character_associations = torch.stack([text_indices, most_likely_speaker_for_each_text], dim=1) |
|
to_keep = text_character_matching_scores.max(dim=1).values > text_character_matching_threshold |
|
text_character_associations = text_character_associations[to_keep] |
|
|
|
if 0 in text_tail_matching_scores.shape: |
|
text_tail_associations = torch.zeros((0, 2), dtype=torch.long) |
|
else: |
|
most_likely_tail_for_each_text = torch.argmax(text_tail_matching_scores, dim=1) |
|
text_indices = torch.arange(len(text_bboxes)).type_as(most_likely_tail_for_each_text) |
|
text_tail_associations = torch.stack([text_indices, most_likely_tail_for_each_text], dim=1) |
|
to_keep = text_tail_matching_scores.max(dim=1).values > text_tail_matching_threshold |
|
text_tail_associations = text_tail_associations[to_keep] |
|
|
|
results.append({ |
|
"panels": panel_bboxes.tolist(), |
|
"texts": text_bboxes.tolist(), |
|
"characters": character_bboxes.tolist(), |
|
"tails": tail_bboxes.tolist(), |
|
"text_character_associations": text_character_associations.tolist(), |
|
"text_tail_associations": text_tail_associations.tolist(), |
|
"character_cluster_labels": character_cluster_labels, |
|
"is_essential_text": is_essential_text.tolist(), |
|
}) |
|
|
|
return results |
|
|
|
def get_affinity_matrices_given_annotations( |
|
self, images, annotations, move_to_device_fn=None, apply_sigmoid=True |
|
): |
|
assert not self.config.disable_detections |
|
move_to_device_fn = self.move_to_device if move_to_device_fn is None else move_to_device_fn |
|
|
|
character_bboxes_in_batch = [[bbox for bbox, label in zip(a["bboxes_as_x1y1x2y2"], a["labels"]) if label == 0] for a in annotations] |
|
crop_embeddings_for_batch = self.predict_crop_embeddings(images, character_bboxes_in_batch, move_to_device_fn) |
|
|
|
inputs_to_detection_transformer = self.processor.preprocess_inputs_for_detection(images, annotations) |
|
inputs_to_detection_transformer = move_to_device_fn(inputs_to_detection_transformer) |
|
processed_targets = inputs_to_detection_transformer.pop("labels") |
|
|
|
detection_transformer_output = self._get_detection_transformer_output(**inputs_to_detection_transformer) |
|
predicted_obj_tokens_for_batch = self._get_predicted_obj_tokens(detection_transformer_output) |
|
predicted_t2c_tokens_for_batch = self._get_predicted_t2c_tokens(detection_transformer_output) |
|
predicted_c2c_tokens_for_batch = self._get_predicted_c2c_tokens(detection_transformer_output) |
|
|
|
predicted_class_scores, predicted_bboxes = self._get_predicted_bboxes_and_classes(detection_transformer_output) |
|
matching_dict = { |
|
"logits": predicted_class_scores, |
|
"pred_boxes": predicted_bboxes, |
|
} |
|
indices = self.matcher(matching_dict, processed_targets) |
|
|
|
matched_char_obj_tokens_for_batch = [] |
|
matched_text_obj_tokens_for_batch = [] |
|
matched_tail_obj_tokens_for_batch = [] |
|
t2c_tokens_for_batch = [] |
|
c2c_tokens_for_batch = [] |
|
|
|
for j, (pred_idx, tgt_idx) in enumerate(indices): |
|
target_idx_to_pred_idx = {tgt.item(): pred.item() for pred, tgt in zip(pred_idx, tgt_idx)} |
|
targets_for_this_image = processed_targets[j] |
|
indices_of_text_boxes_in_annotation = [i for i, label in enumerate(targets_for_this_image["class_labels"]) if label == 1] |
|
indices_of_char_boxes_in_annotation = [i for i, label in enumerate(targets_for_this_image["class_labels"]) if label == 0] |
|
indices_of_tail_boxes_in_annotation = [i for i, label in enumerate(targets_for_this_image["class_labels"]) if label == 3] |
|
predicted_text_indices = [target_idx_to_pred_idx[i] for i in indices_of_text_boxes_in_annotation] |
|
predicted_char_indices = [target_idx_to_pred_idx[i] for i in indices_of_char_boxes_in_annotation] |
|
predicted_tail_indices = [target_idx_to_pred_idx[i] for i in indices_of_tail_boxes_in_annotation] |
|
matched_char_obj_tokens_for_batch.append(predicted_obj_tokens_for_batch[j][predicted_char_indices]) |
|
matched_text_obj_tokens_for_batch.append(predicted_obj_tokens_for_batch[j][predicted_text_indices]) |
|
matched_tail_obj_tokens_for_batch.append(predicted_obj_tokens_for_batch[j][predicted_tail_indices]) |
|
t2c_tokens_for_batch.append(predicted_t2c_tokens_for_batch[j]) |
|
c2c_tokens_for_batch.append(predicted_c2c_tokens_for_batch[j]) |
|
|
|
text_character_affinity_matrices = self._get_text_character_affinity_matrices( |
|
character_obj_tokens_for_batch=matched_char_obj_tokens_for_batch, |
|
text_obj_tokens_for_this_batch=matched_text_obj_tokens_for_batch, |
|
t2c_tokens_for_batch=t2c_tokens_for_batch, |
|
apply_sigmoid=apply_sigmoid, |
|
) |
|
|
|
character_character_affinity_matrices = self._get_character_character_affinity_matrices( |
|
character_obj_tokens_for_batch=matched_char_obj_tokens_for_batch, |
|
crop_embeddings_for_batch=crop_embeddings_for_batch, |
|
c2c_tokens_for_batch=c2c_tokens_for_batch, |
|
apply_sigmoid=apply_sigmoid, |
|
) |
|
|
|
character_character_affinity_matrices_crop_only = self._get_character_character_affinity_matrices( |
|
character_obj_tokens_for_batch=matched_char_obj_tokens_for_batch, |
|
crop_embeddings_for_batch=crop_embeddings_for_batch, |
|
c2c_tokens_for_batch=c2c_tokens_for_batch, |
|
crop_only=True, |
|
apply_sigmoid=apply_sigmoid, |
|
) |
|
|
|
text_tail_affinity_matrices = self._get_text_tail_affinity_matrices( |
|
text_obj_tokens_for_this_batch=matched_text_obj_tokens_for_batch, |
|
tail_obj_tokens_for_batch=matched_tail_obj_tokens_for_batch, |
|
apply_sigmoid=apply_sigmoid, |
|
) |
|
|
|
is_this_text_a_dialogue = self._get_text_classification(matched_text_obj_tokens_for_batch, apply_sigmoid=apply_sigmoid) |
|
|
|
return { |
|
"text_character_affinity_matrices": text_character_affinity_matrices, |
|
"character_character_affinity_matrices": character_character_affinity_matrices, |
|
"character_character_affinity_matrices_crop_only": character_character_affinity_matrices_crop_only, |
|
"text_tail_affinity_matrices": text_tail_affinity_matrices, |
|
"is_this_text_a_dialogue": is_this_text_a_dialogue, |
|
} |
|
|
|
|
|
def predict_crop_embeddings(self, images, crop_bboxes, move_to_device_fn=None, mask_ratio=0.0, batch_size=256): |
|
if self.config.disable_crop_embeddings: |
|
return None |
|
|
|
assert isinstance(crop_bboxes, List), "please provide a list of bboxes for each image to get embeddings for" |
|
|
|
move_to_device_fn = self.move_to_device if move_to_device_fn is None else move_to_device_fn |
|
|
|
|
|
old_mask_ratio = self.crop_embedding_model.embeddings.config.mask_ratio |
|
self.crop_embedding_model.embeddings.config.mask_ratio = mask_ratio |
|
|
|
crops_per_image = [] |
|
num_crops_per_batch = [len(bboxes) for bboxes in crop_bboxes] |
|
for image, bboxes, num_crops in zip(images, crop_bboxes, num_crops_per_batch): |
|
crops = self.processor.crop_image(image, bboxes) |
|
assert len(crops) == num_crops |
|
crops_per_image.extend(crops) |
|
|
|
if len(crops_per_image) == 0: |
|
return [move_to_device_fn(torch.zeros(0, self.config.crop_embedding_model_config.hidden_size)) for _ in crop_bboxes] |
|
|
|
crops_per_image = self.processor.preprocess_inputs_for_crop_embeddings(crops_per_image) |
|
crops_per_image = move_to_device_fn(crops_per_image) |
|
|
|
|
|
embeddings = [] |
|
for i in range(0, len(crops_per_image), batch_size): |
|
crops = crops_per_image[i:i+batch_size] |
|
embeddings_per_batch = self.crop_embedding_model(crops).last_hidden_state[:, 0] |
|
embeddings.append(embeddings_per_batch) |
|
embeddings = torch.cat(embeddings, dim=0) |
|
|
|
crop_embeddings_for_batch = [] |
|
for num_crops in num_crops_per_batch: |
|
crop_embeddings_for_batch.append(embeddings[:num_crops]) |
|
embeddings = embeddings[num_crops:] |
|
|
|
|
|
self.crop_embedding_model.embeddings.config.mask_ratio = old_mask_ratio |
|
|
|
return crop_embeddings_for_batch |
|
|
|
def predict_ocr(self, images, crop_bboxes, move_to_device_fn=None, use_tqdm=False, batch_size=32): |
|
assert not self.config.disable_ocr |
|
move_to_device_fn = self.move_to_device if move_to_device_fn is None else move_to_device_fn |
|
|
|
crops_per_image = [] |
|
num_crops_per_batch = [len(bboxes) for bboxes in crop_bboxes] |
|
for image, bboxes, num_crops in zip(images, crop_bboxes, num_crops_per_batch): |
|
crops = self.processor.crop_image(image, bboxes) |
|
assert len(crops) == num_crops |
|
crops_per_image.extend(crops) |
|
|
|
if len(crops_per_image) == 0: |
|
return [[] for _ in crop_bboxes] |
|
|
|
crops_per_image = self.processor.preprocess_inputs_for_ocr(crops_per_image) |
|
crops_per_image = move_to_device_fn(crops_per_image) |
|
|
|
|
|
all_generated_texts = [] |
|
if use_tqdm: |
|
from tqdm import tqdm |
|
pbar = tqdm(range(0, len(crops_per_image), batch_size)) |
|
else: |
|
pbar = range(0, len(crops_per_image), batch_size) |
|
for i in pbar: |
|
crops = crops_per_image[i:i+batch_size] |
|
generated_ids = self.ocr_model.generate(crops) |
|
generated_texts = self.processor.postprocess_ocr_tokens(generated_ids) |
|
all_generated_texts.extend(generated_texts) |
|
|
|
texts_for_images = [] |
|
for num_crops in num_crops_per_batch: |
|
texts_for_images.append([x.replace("\n", "") for x in all_generated_texts[:num_crops]]) |
|
all_generated_texts = all_generated_texts[num_crops:] |
|
|
|
return texts_for_images |
|
|
|
def visualise_single_image_prediction( |
|
self, image_as_np_array, predictions, filename=None |
|
): |
|
return visualise_single_image_prediction(image_as_np_array, predictions, filename) |
|
|
|
|
|
@torch.no_grad() |
|
def _get_detection_transformer_output( |
|
self, |
|
pixel_values: torch.FloatTensor, |
|
pixel_mask: Optional[torch.LongTensor] = None |
|
): |
|
if self.config.disable_detections: |
|
raise ValueError("Detection model is disabled. Set disable_detections=False in the config.") |
|
return self.detection_transformer( |
|
pixel_values=pixel_values, |
|
pixel_mask=pixel_mask, |
|
return_dict=True |
|
) |
|
|
|
def _get_predicted_obj_tokens( |
|
self, |
|
detection_transformer_output: ConditionalDetrModelOutput |
|
): |
|
return detection_transformer_output.last_hidden_state[:, :-self.num_non_obj_tokens] |
|
|
|
def _get_predicted_c2c_tokens( |
|
self, |
|
detection_transformer_output: ConditionalDetrModelOutput |
|
): |
|
return detection_transformer_output.last_hidden_state[:, -self.num_non_obj_tokens] |
|
|
|
def _get_predicted_t2c_tokens( |
|
self, |
|
detection_transformer_output: ConditionalDetrModelOutput |
|
): |
|
return detection_transformer_output.last_hidden_state[:, -self.num_non_obj_tokens+1] |
|
|
|
def _get_predicted_bboxes_and_classes( |
|
self, |
|
detection_transformer_output: ConditionalDetrModelOutput, |
|
): |
|
if self.config.disable_detections: |
|
raise ValueError("Detection model is disabled. Set disable_detections=False in the config.") |
|
|
|
obj = self._get_predicted_obj_tokens(detection_transformer_output) |
|
|
|
predicted_class_scores = self.class_labels_classifier(obj) |
|
reference = detection_transformer_output.reference_points[:-self.num_non_obj_tokens] |
|
reference_before_sigmoid = inverse_sigmoid(reference).transpose(0, 1) |
|
predicted_boxes = self.bbox_predictor(obj) |
|
predicted_boxes[..., :2] += reference_before_sigmoid |
|
predicted_boxes = predicted_boxes.sigmoid() |
|
|
|
return predicted_class_scores, predicted_boxes |
|
|
|
def _get_text_classification( |
|
self, |
|
text_obj_tokens_for_batch: List[torch.FloatTensor], |
|
apply_sigmoid=False, |
|
): |
|
assert not self.config.disable_detections |
|
is_this_text_a_dialogue = [] |
|
for text_obj_tokens in text_obj_tokens_for_batch: |
|
if text_obj_tokens.shape[0] == 0: |
|
is_this_text_a_dialogue.append(torch.tensor([], dtype=torch.bool)) |
|
continue |
|
classification = self.is_this_text_a_dialogue(text_obj_tokens).squeeze(-1) |
|
if apply_sigmoid: |
|
classification = classification.sigmoid() |
|
is_this_text_a_dialogue.append(classification) |
|
return is_this_text_a_dialogue |
|
|
|
def _get_character_character_affinity_matrices( |
|
self, |
|
character_obj_tokens_for_batch: List[torch.FloatTensor] = None, |
|
crop_embeddings_for_batch: List[torch.FloatTensor] = None, |
|
c2c_tokens_for_batch: List[torch.FloatTensor] = None, |
|
crop_only=False, |
|
apply_sigmoid=True, |
|
): |
|
assert self.config.disable_detections or (character_obj_tokens_for_batch is not None and c2c_tokens_for_batch is not None) |
|
assert self.config.disable_crop_embeddings or crop_embeddings_for_batch is not None |
|
assert not self.config.disable_detections or not self.config.disable_crop_embeddings |
|
|
|
if crop_only: |
|
affinity_matrices = [] |
|
for crop_embeddings in crop_embeddings_for_batch: |
|
crop_embeddings = crop_embeddings / crop_embeddings.norm(dim=-1, keepdim=True) |
|
affinity_matrix = crop_embeddings @ crop_embeddings.T |
|
affinity_matrices.append(affinity_matrix) |
|
return affinity_matrices |
|
affinity_matrices = [] |
|
for batch_index, (character_obj_tokens, c2c) in enumerate(zip(character_obj_tokens_for_batch, c2c_tokens_for_batch)): |
|
if character_obj_tokens.shape[0] == 0: |
|
affinity_matrices.append(torch.zeros(0, 0).type_as(character_obj_tokens)) |
|
continue |
|
if not self.config.disable_crop_embeddings: |
|
crop_embeddings = crop_embeddings_for_batch[batch_index] |
|
assert character_obj_tokens.shape[0] == crop_embeddings.shape[0] |
|
character_obj_tokens = torch.cat([character_obj_tokens, crop_embeddings], dim=-1) |
|
char_i = repeat(character_obj_tokens, "i d -> i repeat d", repeat=character_obj_tokens.shape[0]) |
|
char_j = repeat(character_obj_tokens, "j d -> repeat j d", repeat=character_obj_tokens.shape[0]) |
|
char_ij = rearrange([char_i, char_j], "two i j d -> (i j) (two d)") |
|
c2c = repeat(c2c, "d -> repeat d", repeat = char_ij.shape[0]) |
|
char_ij_c2c = torch.cat([char_ij, c2c], dim=-1) |
|
character_character_affinities = self.character_character_matching_head(char_ij_c2c) |
|
character_character_affinities = rearrange(character_character_affinities, "(i j) 1 -> i j", i=char_i.shape[0]) |
|
character_character_affinities = (character_character_affinities + character_character_affinities.T) / 2 |
|
if apply_sigmoid: |
|
character_character_affinities = character_character_affinities.sigmoid() |
|
affinity_matrices.append(character_character_affinities) |
|
return affinity_matrices |
|
|
|
def _get_text_character_affinity_matrices( |
|
self, |
|
character_obj_tokens_for_batch: List[torch.FloatTensor] = None, |
|
text_obj_tokens_for_this_batch: List[torch.FloatTensor] = None, |
|
t2c_tokens_for_batch: List[torch.FloatTensor] = None, |
|
apply_sigmoid=True, |
|
): |
|
assert not self.config.disable_detections |
|
assert character_obj_tokens_for_batch is not None and text_obj_tokens_for_this_batch is not None and t2c_tokens_for_batch is not None |
|
affinity_matrices = [] |
|
for character_obj_tokens, text_obj_tokens, t2c in zip(character_obj_tokens_for_batch, text_obj_tokens_for_this_batch, t2c_tokens_for_batch): |
|
if character_obj_tokens.shape[0] == 0 or text_obj_tokens.shape[0] == 0: |
|
affinity_matrices.append(torch.zeros(text_obj_tokens.shape[0], character_obj_tokens.shape[0]).type_as(character_obj_tokens)) |
|
continue |
|
text_i = repeat(text_obj_tokens, "i d -> i repeat d", repeat=character_obj_tokens.shape[0]) |
|
char_j = repeat(character_obj_tokens, "j d -> repeat j d", repeat=text_obj_tokens.shape[0]) |
|
text_char = rearrange([text_i, char_j], "two i j d -> (i j) (two d)") |
|
t2c = repeat(t2c, "d -> repeat d", repeat = text_char.shape[0]) |
|
text_char_t2c = torch.cat([text_char, t2c], dim=-1) |
|
text_character_affinities = self.text_character_matching_head(text_char_t2c) |
|
text_character_affinities = rearrange(text_character_affinities, "(i j) 1 -> i j", i=text_i.shape[0]) |
|
if apply_sigmoid: |
|
text_character_affinities = text_character_affinities.sigmoid() |
|
affinity_matrices.append(text_character_affinities) |
|
return affinity_matrices |
|
|
|
def _get_text_tail_affinity_matrices( |
|
self, |
|
text_obj_tokens_for_this_batch: List[torch.FloatTensor] = None, |
|
tail_obj_tokens_for_batch: List[torch.FloatTensor] = None, |
|
apply_sigmoid=True, |
|
): |
|
assert not self.config.disable_detections |
|
assert tail_obj_tokens_for_batch is not None and text_obj_tokens_for_this_batch is not None |
|
affinity_matrices = [] |
|
for tail_obj_tokens, text_obj_tokens in zip(tail_obj_tokens_for_batch, text_obj_tokens_for_this_batch): |
|
if tail_obj_tokens.shape[0] == 0 or text_obj_tokens.shape[0] == 0: |
|
affinity_matrices.append(torch.zeros(text_obj_tokens.shape[0], tail_obj_tokens.shape[0]).type_as(tail_obj_tokens)) |
|
continue |
|
text_i = repeat(text_obj_tokens, "i d -> i repeat d", repeat=tail_obj_tokens.shape[0]) |
|
tail_j = repeat(tail_obj_tokens, "j d -> repeat j d", repeat=text_obj_tokens.shape[0]) |
|
text_tail = rearrange([text_i, tail_j], "two i j d -> (i j) (two d)") |
|
text_tail_affinities = self.text_tail_matching_head(text_tail) |
|
text_tail_affinities = rearrange(text_tail_affinities, "(i j) 1 -> i j", i=text_i.shape[0]) |
|
if apply_sigmoid: |
|
text_tail_affinities = text_tail_affinities.sigmoid() |
|
affinity_matrices.append(text_tail_affinities) |
|
return affinity_matrices |