File size: 18,461 Bytes
501636c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 |
# coding=utf-8
# Copyright 2024 Microsoft and The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Processor class for Florence-2.
"""
import re
import logging
from typing import List, Optional, Union
import numpy as np
import torch
import PIL
from transformers.feature_extraction_utils import BatchFeature
from transformers.image_utils import ImageInput
from transformers.processing_utils import ProcessorMixin
from transformers.tokenization_utils_base import (
PaddingStrategy,
TextInput,
TruncationStrategy,
)
from transformers.utils import TensorType
import re
logger = logging.getLogger(__name__)
class Florence2Processor(ProcessorMixin):
attributes = ["image_processor", "tokenizer"]
image_processor_class = "CLIPImageProcessor"
tokenizer_class = ("BartTokenizer", "BartTokenizerFast")
def __init__(
self,
image_processor=None,
tokenizer=None,
):
if image_processor is None:
raise ValueError("You need to specify an `image_processor`.")
if tokenizer is None:
raise ValueError("You need to specify a `tokenizer`.")
if not hasattr(image_processor, "image_seq_length"):
raise ValueError("Image processor is missing an `image_seq_length` attribute.")
self.image_seq_length = image_processor.image_seq_length
tokens_to_add = {
'additional_special_tokens': \
tokenizer.additional_special_tokens + \
['<od>', '</od>', '<ocr>', '</ocr>'] + \
[f'<loc_{x}>' for x in range(1000)] + \
['<cap>', '</cap>', '<ncap>', '</ncap>','<dcap>', '</dcap>', '<grounding>', '</grounding>', '<seg>', '</seg>', '<sep>', '<region_cap>', '</region_cap>', '<region_to_desciption>', '</region_to_desciption>', '<proposal>', '</proposal>', '<poly>', '</poly>', '<and>'] + \
['<panel>', '<text>', '<character>', '<tail>']
}
tokenizer.add_special_tokens(tokens_to_add)
self.decoder_start_token_id = 2
self.box_quantizer = BoxQuantizer(
mode='floor',
bins=(1000, 1000),
)
super().__init__(image_processor, tokenizer)
def __call__(
self,
batch_input_text: List[TextInput] = None,
batch_input_list_of_list_of_bboxes: List[List[List[List[float]]]] = None,
batch_output_text: List[TextInput] = None,
batch_output_list_of_list_of_bboxes: List[List[List[List[float]]]] = None,
batch_images: ImageInput = None,
batch_character_cluster_labels = None,
batch_text_character_association_labels = None,
batch_text_tail_association_labels = None,
batch_is_essential_text_labels = None,
batch_tail_character_association_labels = None,
padding: Union[bool, str, PaddingStrategy] = None,
truncation: Union[bool, str, TruncationStrategy] = None,
max_input_length_including_image_tokens=None,
max_output_length=None,
return_tensors: Optional[Union[str, TensorType]] = TensorType.PYTORCH,
do_resize: bool = None,
do_normalize: bool = None,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
data_format: Optional["ChannelDimension"] = "channels_first", # noqa: F821
input_data_format: Optional[
Union[str, "ChannelDimension"] # noqa: F821
] = None,
resample: "PILImageResampling" = None, # noqa: F821
do_convert_rgb: bool = None,
dtype: torch.dtype = None,
device: torch.device = None,
) -> BatchFeature:
assert batch_images is not None, "`batch_images` are expected as arguments to a `Florence2Processor` instance."
assert batch_input_text is not None, "`batch_input_text` are expected as arguments to a `Florence2Processor` instance."
if batch_input_list_of_list_of_bboxes is None:
batch_input_list_of_list_of_bboxes = [[] for _ in range(len(batch_input_text))]
assert len(batch_input_text) == len(batch_input_list_of_list_of_bboxes) == len(batch_images), "`batch_input_text`, `batch_input_list_of_list_of_bboxes` and `batch_images` have different lengths."
if batch_output_text is None:
assert batch_output_list_of_list_of_bboxes is None, "`batch_output_text` and `batch_output_list_of_list_of_bboxes` should be provided together."
else:
if batch_output_list_of_list_of_bboxes is None:
batch_output_list_of_list_of_bboxes = [[] for _ in range(len(batch_output_text))]
assert len(batch_output_text) == len(batch_output_list_of_list_of_bboxes) == len(batch_images), "`batch_output_text`, `batch_output_list_of_list_of_bboxes` and `batch_images` have different lengths."
max_input_length = max_input_length_including_image_tokens - self.image_seq_length if max_input_length_including_image_tokens is not None else None
batch_input_texts = [self._format_text_with_bboxes(text, list_of_list_of_bboxes, image) for text, list_of_list_of_bboxes, image in zip(batch_input_text, batch_input_list_of_list_of_bboxes, batch_images)]
inputs = self.tokenizer(
batch_input_texts,
return_tensors=return_tensors,
padding=padding,
truncation=False,
)
# Truncating manually because I don't want </s> token at the end of truncated sequences, which is the default behavior
if inputs["input_ids"].shape[1] > max_input_length:
inputs["input_ids"] = inputs["input_ids"][:, :max_input_length]
inputs["attention_mask"] = inputs["attention_mask"][:, :max_input_length]
if batch_output_text is not None:
batch_output_texts = [self._format_text_with_bboxes(text, list_of_list_of_bboxes, image) for text, list_of_list_of_bboxes, image in zip(batch_output_text, batch_output_list_of_list_of_bboxes, batch_images)]
decoder_inputs = self.tokenizer(
batch_output_texts,
return_tensors=return_tensors,
padding=padding,
truncation=False,
)
# Truncating manually because I don't want </s> token at the end of truncated sequences, which is the default behavior
if decoder_inputs["input_ids"].shape[1] > max_output_length:
decoder_inputs["input_ids"] = decoder_inputs["input_ids"][:, :max_output_length]
decoder_inputs["attention_mask"] = decoder_inputs["attention_mask"][:, :max_output_length]
pixel_values = self.image_processor(
batch_images,
do_resize=do_resize,
do_normalize=do_normalize,
return_tensors=return_tensors,
image_mean=image_mean,
image_std=image_std,
input_data_format=input_data_format,
data_format=data_format,
resample=resample,
do_convert_rgb=do_convert_rgb,
)["pixel_values"]
if dtype is not None:
pixel_values = pixel_values.to(dtype)
return_data = {**inputs, "pixel_values": pixel_values}
if batch_output_text is not None:
labels = decoder_inputs["input_ids"]
decoder_input_ids = labels.new_zeros(labels.shape)
decoder_input_ids[:, 1:] = labels[:, :-1].clone()
decoder_input_ids[:, 0] = self.decoder_start_token_id
decoder_attention_mask = decoder_inputs["attention_mask"].new_ones(decoder_input_ids.shape)
decoder_attention_mask[:, 1:] = decoder_inputs["attention_mask"][:, :-1].clone()
# Mask fill labels to replace pad token ID with -100
labels.masked_fill_(labels == self.tokenizer.pad_token_id, -100)
return_data.update({
"labels": labels,
"decoder_input_ids": decoder_input_ids,
"decoder_attention_mask": decoder_attention_mask,
})
if device is not None:
for key, value in return_data.items():
if isinstance(value, torch.Tensor):
return_data[key] = value.to(device)
if batch_character_cluster_labels is not None:
return_data["character_cluster_labels"] = batch_character_cluster_labels
if batch_text_character_association_labels is not None:
return_data["text_character_association_labels"] = batch_text_character_association_labels
if batch_text_tail_association_labels is not None:
return_data["text_tail_association_labels"] = batch_text_tail_association_labels
if batch_is_essential_text_labels is not None:
return_data["is_essential_text_labels"] = batch_is_essential_text_labels
if batch_tail_character_association_labels is not None:
return_data["tail_character_association_labels"] = batch_tail_character_association_labels
return_data["tokenizer"] = self.tokenizer
return BatchFeature(data=return_data)
def cleanup_generated_text(self, generated_text):
return generated_text.replace("<s>", "").replace("</s>", "").replace("<pad>", "")
def postprocess_output(self, generated_ids, images):
generated_ids.masked_fill_(generated_ids == -100, self.tokenizer.pad_token_id) # only for some testing purposes
batch_decoded_texts = self.batch_decode(generated_ids, skip_special_tokens=False)
batch_decoded_texts = [self.cleanup_generated_text(text) for text in batch_decoded_texts]
batch_list_of_list_of_bboxes = []
batch_indices_of_bboxes_in_new_string = []
batch_new_texts = []
for text, image in zip(batch_decoded_texts, images):
size_wh = self._get_image_size_wh(image)
parsed_text, list_of_stringified_bboxes, start_end_in_new_string = self._parse_text_with_bboxes(text)
list_of_list_of_bboxes = [self.box_quantizer.dequantize_from_stringified_bboxes(stringified_bbox, size_wh) for stringified_bbox in list_of_stringified_bboxes]
batch_list_of_list_of_bboxes.append(list_of_list_of_bboxes)
batch_indices_of_bboxes_in_new_string.append(start_end_in_new_string)
batch_new_texts.append(parsed_text)
return batch_new_texts, batch_list_of_list_of_bboxes, batch_indices_of_bboxes_in_new_string
def _parse_text_with_bboxes(self, text):
loc_pattern = r'((?:<loc_\d+>){4}(?:,(?:<loc_\d+>){4})*)'
grounding_pattern = r'<grounding>(.*?)</grounding>' + loc_pattern
list_of_stringified_bboxes = []
start_end_in_new_string = []
new_text = ""
original_pos = 0
new_pos = 0
for match in re.finditer(grounding_pattern + '|' + loc_pattern, text):
# Add text before the match
new_text += text[original_pos:match.start()]
new_pos += match.start() - original_pos
if match.group(0).startswith('<grounding>'):
# Handle grounding pattern
grounding_text = match.group(1)
locs = match.group(2)
new_text += grounding_text
list_of_stringified_bboxes.append(locs)
start_end_in_new_string.append((new_pos, new_pos + len(grounding_text)))
new_pos += len(grounding_text)
else:
# Handle loc pattern
locs = match.group(0)
replacement = ""
new_text += replacement
list_of_stringified_bboxes.append(locs)
start_end_in_new_string.append((new_pos, new_pos + len(replacement)))
new_pos += len(replacement)
original_pos = match.end()
# Add any remaining text
new_text += text[original_pos:]
return new_text, list_of_stringified_bboxes, start_end_in_new_string
def _format_text_with_bboxes(self, text, list_of_list_of_bboxes, image):
size_wh = self._get_image_size_wh(image)
quantized_bbox_lists = []
for list_of_bboxes in list_of_list_of_bboxes:
quantized_bboxes = self.box_quantizer.quantize(list_of_bboxes, size_wh=size_wh)
stringified_bboxes = [f"<loc_{x1}><loc_{y1}><loc_{x2}><loc_{y2}>" for x1, y1, x2, y2 in quantized_bboxes]
stringified_bboxes = ",".join(stringified_bboxes)
quantized_bbox_lists.append(stringified_bboxes)
return text.format(*quantized_bbox_lists)
def _get_image_size_wh(self, image):
# Get size_wh from image based on its type
if isinstance(image, torch.Tensor):
# For PyTorch tensor
if image.dim() == 3:
size_wh = (image.shape[2], image.shape[1]) # (width, height)
elif image.dim() == 4:
size_wh = (image.shape[3], image.shape[2]) # (width, height)
else:
raise ValueError("Unsupported tensor dimensions")
elif isinstance(image, np.ndarray):
# For NumPy array
if image.ndim == 2:
size_wh = (image.shape[1], image.shape[0]) # (width, height)
elif image.ndim == 3:
size_wh = (image.shape[1], image.shape[0]) # (width, height)
else:
raise ValueError("Unsupported array dimensions")
elif isinstance(image, PIL.Image.Image):
# For PIL Image
size_wh = image.size # Already in (width, height) format
else:
raise TypeError("Unsupported image type")
return size_wh
# Copied from transformers.models.clip.processing_clip.CLIPProcessor.batch_decode with CLIP->Florence2
def batch_decode(self, *args, **kwargs):
"""
This method forwards all its arguments to BartTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
refer to the docstring of this method for more information.
"""
return self.tokenizer.batch_decode(*args, **kwargs)
# Copied from transformers.models.clip.processing_clip.CLIPProcessor.decode with CLIP->Florence2
def decode(self, *args, **kwargs):
"""
This method forwards all its arguments to BartTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
the docstring of this method for more information.
"""
return self.tokenizer.decode(*args, **kwargs)
@property
# Copied from transformers.models.clip.processing_clip.CLIPProcessor.model_input_names with CLIP->Florence2
def model_input_names(self):
tokenizer_input_names = self.tokenizer.model_input_names
image_processor_input_names = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
class BoxQuantizer(object):
def __init__(self, mode, bins):
self.mode = mode
self.bins = bins
def quantize(self, boxes, size_wh):
if not isinstance(boxes, torch.Tensor):
boxes = torch.tensor(boxes)
bins_w, bins_h = self.bins # Quantization bins.
size_w, size_h = size_wh # Original image size.
size_per_bin_w = size_w / bins_w
size_per_bin_h = size_h / bins_h
xmin, ymin, xmax, ymax = boxes.split(1, dim=-1) # Shape: 4 * [N, 1].
if self.mode == 'floor':
quantized_xmin = (
xmin / size_per_bin_w).floor().clamp(0, bins_w - 1)
quantized_ymin = (
ymin / size_per_bin_h).floor().clamp(0, bins_h - 1)
quantized_xmax = (
xmax / size_per_bin_w).floor().clamp(0, bins_w - 1)
quantized_ymax = (
ymax / size_per_bin_h).floor().clamp(0, bins_h - 1)
elif self.mode == 'round':
raise NotImplementedError()
else:
raise ValueError('Incorrect quantization type.')
quantized_boxes = torch.cat(
(quantized_xmin, quantized_ymin, quantized_xmax, quantized_ymax), dim=-1
).int()
return quantized_boxes.tolist()
def dequantize_from_stringified_bboxes(self, stringified_bboxes, size_wh):
bboxes = stringified_bboxes.split(',')
def parse_bbox(bbox_string):
pattern = r'<loc_(\d+)><loc_(\d+)><loc_(\d+)><loc_(\d+)>'
match = re.match(pattern, bbox_string)
if match:
return [int(match.group(i)) for i in range(1, 5)]
else:
raise ValueError(f"Invalid bbox string format: {bbox_string}")
parsed_bboxes = [parse_bbox(bbox) for bbox in bboxes]
return self.dequantize(parsed_bboxes, size_wh).tolist()
def dequantize(self, boxes: torch.Tensor, size):
if not isinstance(boxes, torch.Tensor):
boxes = torch.tensor(boxes)
bins_w, bins_h = self.bins # Quantization bins.
size_w, size_h = size # Original image size.
size_per_bin_w = size_w / bins_w
size_per_bin_h = size_h / bins_h
xmin, ymin, xmax, ymax = boxes.split(1, dim=-1) # Shape: 4 * [N, 1].
if self.mode == 'floor':
# Add 0.5 to use the center position of the bin as the coordinate.
dequantized_xmin = (xmin + 0.5) * size_per_bin_w
dequantized_ymin = (ymin + 0.5) * size_per_bin_h
dequantized_xmax = (xmax + 0.5) * size_per_bin_w
dequantized_ymax = (ymax + 0.5) * size_per_bin_h
elif self.mode == 'round':
raise NotImplementedError()
else:
raise ValueError('Incorrect quantization type.')
dequantized_boxes = torch.cat(
(dequantized_xmin, dequantized_ymin,
dequantized_xmax, dequantized_ymax), dim=-1
)
return dequantized_boxes |