File size: 1,530 Bytes
2659c7f
758a0b3
2659c7f
758a0b3
2659c7f
758a0b3
2659c7f
 
758a0b3
2659c7f
 
758a0b3
2659c7f
758a0b3
 
2659c7f
758a0b3
2659c7f
758a0b3
 
2659c7f
758a0b3
 
 
 
 
2659c7f
758a0b3
2659c7f
 
 
758a0b3
2659c7f
758a0b3
2659c7f
758a0b3
 
 
 
 
2659c7f
758a0b3
2659c7f
 
 
758a0b3
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
---
base_model: meta-llama/Llama-3.2-1B-Instruct
library_name: transformers
model_name: llama-3.2-1B-Instruct-SQL-FT
tags:
- generated_from_trainer
- trl
- sft
licence: license
---

# Model Card for llama-3.2-1B-Instruct-SQL-FT

This model is a fine-tuned version of [meta-llama/Llama-3.2-1B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-1B-Instruct).
It has been trained using [TRL](https://github.com/huggingface/trl).

## Quick start

```python
from transformers import pipeline

question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="raghavbali/llama-3.2-1B-Instruct-SQL-FT", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```

## Training procedure



This model was trained with SFT.

### Framework versions

- TRL: 0.12.1
- Transformers: 4.46.3
- Pytorch: 2.5.1+cu121
- Datasets: 3.1.0
- Tokenizers: 0.20.3

## Citations



Cite TRL as:
    
```bibtex
@misc{vonwerra2022trl,
	title        = {{TRL: Transformer Reinforcement Learning}},
	author       = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
	year         = 2020,
	journal      = {GitHub repository},
	publisher    = {GitHub},
	howpublished = {\url{https://github.com/huggingface/trl}}
}
```