--- license: mit base_model: microsoft/speecht5_tts tags: - generated_from_trainer model-index: - name: EGY1.5K results: [] --- # EGY1.5K This model is a fine-tuned version of [microsoft/speecht5_tts](https://huggingface.co/microsoft/speecht5_tts) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4590 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - training_steps: 3000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.5688 | 1.48 | 100 | 0.5112 | | 0.5301 | 2.96 | 200 | 0.4908 | | 0.5023 | 4.44 | 300 | 0.4707 | | 0.524 | 5.93 | 400 | 0.4797 | | 0.5001 | 7.41 | 500 | 0.4712 | | 0.4774 | 8.89 | 600 | 0.4690 | | 0.4793 | 10.37 | 700 | 0.4627 | | 0.4666 | 11.85 | 800 | 0.4657 | | 0.4649 | 13.33 | 900 | 0.4599 | | 0.4659 | 14.81 | 1000 | 0.4616 | | 0.4557 | 16.3 | 1100 | 0.4532 | | 0.4516 | 17.78 | 1200 | 0.4535 | | 0.4489 | 19.26 | 1300 | 0.4572 | | 0.4431 | 20.74 | 1400 | 0.4504 | | 0.4488 | 22.22 | 1500 | 0.4543 | | 0.4452 | 23.7 | 1600 | 0.4557 | | 0.4386 | 25.19 | 1700 | 0.4549 | | 0.4297 | 26.67 | 1800 | 0.4487 | | 0.4327 | 28.15 | 1900 | 0.4559 | | 0.425 | 29.63 | 2000 | 0.4572 | | 0.4251 | 31.11 | 2100 | 0.4531 | | 0.4295 | 32.59 | 2200 | 0.4500 | | 0.4258 | 34.07 | 2300 | 0.4561 | | 0.4222 | 35.56 | 2400 | 0.4550 | | 0.4119 | 37.04 | 2500 | 0.4569 | | 0.4208 | 38.52 | 2600 | 0.4573 | | 0.4145 | 40.0 | 2700 | 0.4568 | | 0.4215 | 41.48 | 2800 | 0.4585 | | 0.4141 | 42.96 | 2900 | 0.4594 | | 0.4136 | 44.44 | 3000 | 0.4590 | ### Framework versions - Transformers 4.39.3 - Pytorch 2.3.0+cu118 - Datasets 3.0.0 - Tokenizers 0.15.2