File size: 2,823 Bytes
4d31533
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
---
language:
- bn
license: apache-2.0
base_model: openai/whisper-tiny
tags:
- hf-asr-leaderboard
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_16_1
metrics:
- wer
model-index:
- name: Whisper Tiny Bengali - Raiyan Ahmed
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: Common Voice 16.1
      type: mozilla-foundation/common_voice_16_1
      config: bn
      split: None
      args: 'config: it, split: test'
    metrics:
    - name: Wer
      type: wer
      value: 49.35147928994083
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Whisper Tiny Bengali - Raiyan Ahmed

This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the Common Voice 16.1 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1982
- Wer: 49.3515

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 5
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Wer     |
|:-------------:|:------:|:----:|:---------------:|:-------:|
| 0.5615        | 0.3021 | 200  | 0.5681          | 92.0473 |
| 0.4104        | 0.6042 | 400  | 0.4525          | 83.0059 |
| 0.336         | 0.9063 | 600  | 0.3315          | 74.3195 |
| 0.257         | 1.2085 | 800  | 0.3217          | 75.2095 |
| 0.2262        | 1.5106 | 1000 | 0.2550          | 65.7941 |
| 0.1906        | 1.8127 | 1200 | 0.2147          | 59.0769 |
| 0.1924        | 2.1148 | 1400 | 0.2816          | 67.6071 |
| 0.1886        | 2.4169 | 1600 | 0.2658          | 68.2982 |
| 0.175         | 2.7190 | 1800 | 0.2401          | 65.5598 |
| 0.1268        | 3.0211 | 2000 | 0.2279          | 57.7160 |
| 0.1206        | 3.3233 | 2200 | 0.2190          | 58.5680 |
| 0.1085        | 3.6254 | 2400 | 0.2048          | 54.5160 |
| 0.1049        | 3.9275 | 2600 | 0.1929          | 53.0769 |
| 0.047         | 4.2296 | 2800 | 0.2100          | 52.4805 |
| 0.0452        | 4.5317 | 3000 | 0.2054          | 50.8852 |
| 0.0411        | 4.8338 | 3200 | 0.1982          | 49.3515 |


### Framework versions

- Transformers 4.41.0.dev0
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1