raj777 commited on
Commit
5cee52d
·
verified ·
1 Parent(s): 0f9d83d

Train with ppo to land on the moon.

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 238.08 +/- 17.01
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x78427b17d900>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x78427b17d990>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x78427b17da20>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x78427b17dab0>", "_build": "<function ActorCriticPolicy._build at 0x78427b17db40>", "forward": "<function ActorCriticPolicy.forward at 0x78427b17dbd0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x78427b17dc60>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x78427b17dcf0>", "_predict": "<function ActorCriticPolicy._predict at 0x78427b17dd80>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x78427b17de10>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x78427b17dea0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x78427b17df30>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x78427b10d940>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1727141036908357531, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM3B9D3WBr0+XAkFvp06aL5zExM9Fq0tPQAAAAAAAAAA2iOyPgLmGD94Lw49CvK+vln5HD5GQ9W9AAAAAAAAAAAtiI4++qsxPmEynL6k1Ii+nAAxPXqFG70AAAAAAAAAADNHRLxcy0+6cmPyvBYgvrh6m0i7E/srOAAAgD8AAIA/M0vivMNBYLoKV5E3fAFlMlDpbjp9KKq2AACAPwAAgD8zVJ+8PjscP6l6ozy/DpG+iMX3u9oqBD0AAAAAAAAAAK18LL6kcu4+sNxuPsuOk75GrXg9VwwkPAAAAAAAAAAADWmcPRHuQj/D7gA+R0qpvlWn9Ty2lNQ9AAAAAAAAAAAzH948KQw1uihV6rpi3GI11kvAuwmHBzoAAIA/AACAP42PsL3JO5g/cBYqvktpzL4lzOG9HozRvQAAAAAAAAAAvT+kPri+sT6Q85i+hqObvn3qTT2aPIo9AAAAAAAAAAANV0e+8hV4P5UFXj3DHcy+U4EBvl0uMz4AAAAAAAAAADPn0TtGxVw/gPhlPZMCir5i90m9vx6lvAAAAAAAAAAA2qa5PYVjh7myndo6LQajNUhWsrno9v+5AAAAAAAAgD/GEew+/rddPy2dWj7n7AC/u8ixPjZB4b0AAAAAAAAAAFrwpD3EpXQ+BeiKvWSQXL6BadC7NlUxvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVPAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG6GJz1bqyKMAWyUTaMBjAF0lEdAm3TiILw4KnV9lChoBkdAcGsd7fHgg2gHTYQBaAhHQJt1xHskY411fZQoaAZHQGVC2QGOdXloB03oA2gIR0CbduUCaJAMdX2UKGgGR0Bwr73i704BaAdN1AFoCEdAm4tRnzxwynV9lChoBkdAcELKsMiKSGgHTUoBaAhHQJuLnXpW3jN1fZQoaAZHQHLfKN6w+t9oB02aA2gIR0CbjEFUyYXwdX2UKGgGR0ByHq8PFvQ4aAdNRwFoCEdAm4x9BSk0rXV9lChoBkdAbXtA44p+dGgHTUsBaAhHQJuMoa99MK11fZQoaAZHQHDfZ/LDAJtoB01RAWgIR0CbjTERradudX2UKGgGR0BxYWzposZpaAdN+AJoCEdAm43Lb5/LDHV9lChoBkdAcJPlS0jTrmgHTR0CaAhHQJuN/aTOgQJ1fZQoaAZHQHConTRYzSFoB00rAWgIR0Cbkbh7E5yVdX2UKGgGR0BtmfxnWattaAdNSQNoCEdAm5SDImw7knV9lChoBkdAcxAd69kBjmgHTY0BaAhHQJuU2vFFUhp1fZQoaAZHQHNx+3DvVmVoB014AWgIR0CbmJXwb2lEdX2UKGgGR0BvaEdYGMXKaAdNKQFoCEdAm5kaCg9Ne3V9lChoBkdAcZDIFNcnmmgHTU4BaAhHQJubCIfr8ix1fZQoaAZHQGy3eNtIkJNoB00+AWgIR0CbnHRTCLuQdX2UKGgGR0Bwzi6oVEeAaAdN3AFoCEdAm5yhSgoPTXV9lChoBkdAcxh28Zk08GgHTVsBaAhHQJucoXpGFzx1fZQoaAZHQHAh/etSydFoB01nAWgIR0CbnXWHUMG5dX2UKGgGR0Bx87U+cH4XaAdNGgJoCEdAm5212V3Ux3V9lChoBkdAcmd3eN1hcGgHTX0BaAhHQJueHA+IM0B1fZQoaAZHQFIwLmZE2HdoB03oA2gIR0CbnnJO32EkdX2UKGgGR0BuGIhUzbeuaAdNEQFoCEdAm59IsiB5HHV9lChoBkdAb86/h2nsLWgHTY4BaAhHQJuf0JWvKU51fZQoaAZHQHI1Ov+wTuhoB00YAWgIR0CboQvicXnAdX2UKGgGR0Bt94UYbbUPaAdNxQFoCEdAm6GoKD0163V9lChoBkdAcmyxrBTGYWgHTWYDaAhHQJuh13gUDdR1fZQoaAZHQHIPbs4T9KpoB001AWgIR0CbohjrAxi5dX2UKGgGR0BKvsVclgMMaAdL5GgIR0Cbo7LMs6JZdX2UKGgGR0Bte7q4YrJ9aAdNSwFoCEdAm6T5/G2kSHV9lChoBkdAUUBf/m1YyWgHS/JoCEdAm6WhGhEjPnV9lChoBkdAcGb+LFXJYGgHTVYBaAhHQJumfbdrO7h1fZQoaAZHQG4MUSqU/wBoB00XAWgIR0CbpomyxA0LdX2UKGgGR0BwfCkAPuohaAdNPgFoCEdAm6bQ9eQdS3V9lChoBkdAcQUS/j81oGgHTYYBaAhHQJum4vlEJBx1fZQoaAZHQHEVrEDQqqhoB01mAWgIR0Cbqix+rlvIdX2UKGgGR0ByTh/Ue+23aAdNFQFoCEdAm6p3eaa1C3V9lChoBkdAb3SuzyBkJGgHTQ8BaAhHQJurJvS+g151fZQoaAZHQHLYRUFSsKdoB02MAWgIR0CbrJtygf2cdX2UKGgGR0Bvzo+W4Vh1aAdN4AFoCEdAm6zfgWJrL3V9lChoBkdAcjxnYxtYS2gHTYMBaAhHQJus6KuSwGJ1fZQoaAZHQEhB7v5P/JhoB0vfaAhHQJuuoAvL5h11fZQoaAZHQHDOJW/8EV5oB02NAWgIR0Cbr4AcT8HfdX2UKGgGR0Bxrn+cYqG2aAdNFAFoCEdAm6+0HUtqYnV9lChoBkdAcBi0MgEEDGgHTX8BaAhHQJuxlTjvNNd1fZQoaAZHQHJxvb9If8xoB01OAWgIR0Cbw88IRh+fdX2UKGgGR0Bw5N4/u9eyaAdN7QFoCEdAm8UCP+4smXV9lChoBkdAcS0k3S8aoGgHTZ0CaAhHQJvGXIzWPLh1fZQoaAZHQHHMBNyo4uNoB014AWgIR0Cbxl0QK8cudX2UKGgGR0ByRwXk5p8GaAdNHgFoCEdAm8aJrtVrAXV9lChoBkdAcUoWGRFI/mgHTbYBaAhHQJvG5ttQ9A51fZQoaAZHQHDyc8DB/I9oB02GAWgIR0CbxwPzFuNxdX2UKGgGR0BzBCN3np0PaAdNPAFoCEdAm8ii2MKkVXV9lChoBkdAb3uX0Gu9vmgHTVUBaAhHQJvI4vDgqEx1fZQoaAZHQHEb9HYpUgloB00SAWgIR0CbyO3wTdtVdX2UKGgGR0Bv/gB3iaRZaAdNTAFoCEdAm8sw2qDK5nV9lChoBkdAcIl20zCUHWgHTWQBaAhHQJvOf4nF5v91fZQoaAZHQHGoVXNke6toB01VAWgIR0CbzusF+uvEdX2UKGgGR0BKL7XpW3jNaAdLvGgIR0Cbzvf3N9pidX2UKGgGR0ByAnbO/tY0aAdNbwFoCEdAm9AYxtYSx3V9lChoBkdARhgNLDhtL2gHS/NoCEdAm9BeiN83M3V9lChoBkdAN1UcXFcY7GgHS7VoCEdAm9B0K7ZnMHV9lChoBkdAcvJ6IFeOXGgHTRIBaAhHQJvQh19v0iB1fZQoaAZHQHFgOQ+2VmloB01KAWgIR0Cb0Js2vStvdX2UKGgGR0By09ocrAgxaAdNGQFoCEdAm9GW9Htnf3V9lChoBkdAcIdr30wrUmgHTQgCaAhHQJvSLq/ub7V1fZQoaAZHQG9uLW7OE/VoB00/AWgIR0Cb0q0ulGgBdX2UKGgGR0BwuxkFwDNhaAdNOgFoCEdAm9LwHRkVe3V9lChoBkdAc0caUiY9gWgHTZEBaAhHQJvTngsK9f11fZQoaAZHQHD7BQm/nGNoB007AWgIR0Cb1Fxb0OEvdX2UKGgGR0BtL4lv60pmaAdNYAFoCEdAm9U6jN6gNHV9lChoBkdAS9AyRB/qgWgHTQcBaAhHQJvXFeQdS2p1fZQoaAZHQHHhTbvgFX9oB00eAWgIR0Cb15IdELH/dX2UKGgGR0ByHdXJYDDCaAdNOwFoCEdAm9jql1r6+HV9lChoBkdAcTysPJ7swGgHTRIBaAhHQJvY/A+IM0B1fZQoaAZHQG/3Ieo1k2BoB02UAWgIR0Cb2TGYa5wwdX2UKGgGR0Bw9klLOAy3aAdNOQFoCEdAm9ouE25xznV9lChoBkdAcNufFaSs82gHTTYBaAhHQJvaPsPatcR1fZQoaAZHQHKgtKIznA9oB01dAWgIR0Cb24rWRRuTdX2UKGgGR0BwBXCgsbvPaAdNbwFoCEdAm9ucDW9UTHV9lChoBkdAcjZDx9XtB2gHTTUBaAhHQJvb3wtrbg11fZQoaAZHQHLRQA+6iCdoB01QAWgIR0Cb3B3hXKbKdX2UKGgGR0BufkmjTKDDaAdNPAFoCEdAm9ys3Mpw0nV9lChoBkdAcw/HAymALGgHTRwBaAhHQJvdLrs0HhV1fZQoaAZHQHKO7eANG3FoB01FAWgIR0Cb3ZF4LThHdX2UKGgGR0BuaxblijL0aAdNOwFoCEdAm97xE8aGYnV9lChoBkdAcxYpJf6XSmgHTS8BaAhHQJvg1HmRvFZ1fZQoaAZHQHIXchPj4pNoB030AWgIR0Cb4h3PzFuOdX2UKGgGR0ByKBGCqZMMaAdNLwFoCEdAm+IzIV/MGHV9lChoBkdAcXX84PwuumgHTQwBaAhHQJviT531SO11fZQoaAZHQG8IpN9H+ZRoB010AWgIR0Cb4tGR3eN2dX2UKGgGR0BwmdrzoUzsaAdL9WgIR0Cb4xMZxaPkdX2UKGgGR0ByLnzz3AVPaAdNNwFoCEdAm+PXbuc+aHV9lChoBkdAU6m/N7jT8mgHS9hoCEdAm+QoPoV2zXV9lChoBkdAcL26T4cm0GgHTW8BaAhHQJvkaQmu1Wt1fZQoaAZHQHGoauW8h9toB00lAWgIR0Cb5JaisXBQdX2UKGgGR0Bt6Rj4HoovaAdNHQFoCEdAm+T1tTDO1XV9lChoBkdAbul9LpRoAWgHTTkBaAhHQJvlghC+lCV1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 252, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.4.1+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:91e8775902de6866224beea4f2d4a23adc67fb80edb62741f400b9cf091c50f1
3
+ size 148076
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x78427b17d900>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x78427b17d990>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x78427b17da20>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x78427b17dab0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x78427b17db40>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x78427b17dbd0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x78427b17dc60>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x78427b17dcf0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x78427b17dd80>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x78427b17de10>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x78427b17dea0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x78427b17df30>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x78427b10d940>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 1015808,
25
+ "_total_timesteps": 1000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1727141036908357531,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM3B9D3WBr0+XAkFvp06aL5zExM9Fq0tPQAAAAAAAAAA2iOyPgLmGD94Lw49CvK+vln5HD5GQ9W9AAAAAAAAAAAtiI4++qsxPmEynL6k1Ii+nAAxPXqFG70AAAAAAAAAADNHRLxcy0+6cmPyvBYgvrh6m0i7E/srOAAAgD8AAIA/M0vivMNBYLoKV5E3fAFlMlDpbjp9KKq2AACAPwAAgD8zVJ+8PjscP6l6ozy/DpG+iMX3u9oqBD0AAAAAAAAAAK18LL6kcu4+sNxuPsuOk75GrXg9VwwkPAAAAAAAAAAADWmcPRHuQj/D7gA+R0qpvlWn9Ty2lNQ9AAAAAAAAAAAzH948KQw1uihV6rpi3GI11kvAuwmHBzoAAIA/AACAP42PsL3JO5g/cBYqvktpzL4lzOG9HozRvQAAAAAAAAAAvT+kPri+sT6Q85i+hqObvn3qTT2aPIo9AAAAAAAAAAANV0e+8hV4P5UFXj3DHcy+U4EBvl0uMz4AAAAAAAAAADPn0TtGxVw/gPhlPZMCir5i90m9vx6lvAAAAAAAAAAA2qa5PYVjh7myndo6LQajNUhWsrno9v+5AAAAAAAAgD/GEew+/rddPy2dWj7n7AC/u8ixPjZB4b0AAAAAAAAAAFrwpD3EpXQ+BeiKvWSQXL6BadC7NlUxvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.015808000000000044,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWVPAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG6GJz1bqyKMAWyUTaMBjAF0lEdAm3TiILw4KnV9lChoBkdAcGsd7fHgg2gHTYQBaAhHQJt1xHskY411fZQoaAZHQGVC2QGOdXloB03oA2gIR0CbduUCaJAMdX2UKGgGR0Bwr73i704BaAdN1AFoCEdAm4tRnzxwynV9lChoBkdAcELKsMiKSGgHTUoBaAhHQJuLnXpW3jN1fZQoaAZHQHLfKN6w+t9oB02aA2gIR0CbjEFUyYXwdX2UKGgGR0ByHq8PFvQ4aAdNRwFoCEdAm4x9BSk0rXV9lChoBkdAbXtA44p+dGgHTUsBaAhHQJuMoa99MK11fZQoaAZHQHDfZ/LDAJtoB01RAWgIR0CbjTERradudX2UKGgGR0BxYWzposZpaAdN+AJoCEdAm43Lb5/LDHV9lChoBkdAcJPlS0jTrmgHTR0CaAhHQJuN/aTOgQJ1fZQoaAZHQHConTRYzSFoB00rAWgIR0Cbkbh7E5yVdX2UKGgGR0BtmfxnWattaAdNSQNoCEdAm5SDImw7knV9lChoBkdAcxAd69kBjmgHTY0BaAhHQJuU2vFFUhp1fZQoaAZHQHNx+3DvVmVoB014AWgIR0CbmJXwb2lEdX2UKGgGR0BvaEdYGMXKaAdNKQFoCEdAm5kaCg9Ne3V9lChoBkdAcZDIFNcnmmgHTU4BaAhHQJubCIfr8ix1fZQoaAZHQGy3eNtIkJNoB00+AWgIR0CbnHRTCLuQdX2UKGgGR0Bwzi6oVEeAaAdN3AFoCEdAm5yhSgoPTXV9lChoBkdAcxh28Zk08GgHTVsBaAhHQJucoXpGFzx1fZQoaAZHQHAh/etSydFoB01nAWgIR0CbnXWHUMG5dX2UKGgGR0Bx87U+cH4XaAdNGgJoCEdAm5212V3Ux3V9lChoBkdAcmd3eN1hcGgHTX0BaAhHQJueHA+IM0B1fZQoaAZHQFIwLmZE2HdoB03oA2gIR0CbnnJO32EkdX2UKGgGR0BuGIhUzbeuaAdNEQFoCEdAm59IsiB5HHV9lChoBkdAb86/h2nsLWgHTY4BaAhHQJuf0JWvKU51fZQoaAZHQHI1Ov+wTuhoB00YAWgIR0CboQvicXnAdX2UKGgGR0Bt94UYbbUPaAdNxQFoCEdAm6GoKD0163V9lChoBkdAcmyxrBTGYWgHTWYDaAhHQJuh13gUDdR1fZQoaAZHQHIPbs4T9KpoB001AWgIR0CbohjrAxi5dX2UKGgGR0BKvsVclgMMaAdL5GgIR0Cbo7LMs6JZdX2UKGgGR0Bte7q4YrJ9aAdNSwFoCEdAm6T5/G2kSHV9lChoBkdAUUBf/m1YyWgHS/JoCEdAm6WhGhEjPnV9lChoBkdAcGb+LFXJYGgHTVYBaAhHQJumfbdrO7h1fZQoaAZHQG4MUSqU/wBoB00XAWgIR0CbpomyxA0LdX2UKGgGR0BwfCkAPuohaAdNPgFoCEdAm6bQ9eQdS3V9lChoBkdAcQUS/j81oGgHTYYBaAhHQJum4vlEJBx1fZQoaAZHQHEVrEDQqqhoB01mAWgIR0Cbqix+rlvIdX2UKGgGR0ByTh/Ue+23aAdNFQFoCEdAm6p3eaa1C3V9lChoBkdAb3SuzyBkJGgHTQ8BaAhHQJurJvS+g151fZQoaAZHQHLYRUFSsKdoB02MAWgIR0CbrJtygf2cdX2UKGgGR0Bvzo+W4Vh1aAdN4AFoCEdAm6zfgWJrL3V9lChoBkdAcjxnYxtYS2gHTYMBaAhHQJus6KuSwGJ1fZQoaAZHQEhB7v5P/JhoB0vfaAhHQJuuoAvL5h11fZQoaAZHQHDOJW/8EV5oB02NAWgIR0Cbr4AcT8HfdX2UKGgGR0Bxrn+cYqG2aAdNFAFoCEdAm6+0HUtqYnV9lChoBkdAcBi0MgEEDGgHTX8BaAhHQJuxlTjvNNd1fZQoaAZHQHJxvb9If8xoB01OAWgIR0Cbw88IRh+fdX2UKGgGR0Bw5N4/u9eyaAdN7QFoCEdAm8UCP+4smXV9lChoBkdAcS0k3S8aoGgHTZ0CaAhHQJvGXIzWPLh1fZQoaAZHQHHMBNyo4uNoB014AWgIR0Cbxl0QK8cudX2UKGgGR0ByRwXk5p8GaAdNHgFoCEdAm8aJrtVrAXV9lChoBkdAcUoWGRFI/mgHTbYBaAhHQJvG5ttQ9A51fZQoaAZHQHDyc8DB/I9oB02GAWgIR0CbxwPzFuNxdX2UKGgGR0BzBCN3np0PaAdNPAFoCEdAm8ii2MKkVXV9lChoBkdAb3uX0Gu9vmgHTVUBaAhHQJvI4vDgqEx1fZQoaAZHQHEb9HYpUgloB00SAWgIR0CbyO3wTdtVdX2UKGgGR0Bv/gB3iaRZaAdNTAFoCEdAm8sw2qDK5nV9lChoBkdAcIl20zCUHWgHTWQBaAhHQJvOf4nF5v91fZQoaAZHQHGoVXNke6toB01VAWgIR0CbzusF+uvEdX2UKGgGR0BKL7XpW3jNaAdLvGgIR0Cbzvf3N9pidX2UKGgGR0ByAnbO/tY0aAdNbwFoCEdAm9AYxtYSx3V9lChoBkdARhgNLDhtL2gHS/NoCEdAm9BeiN83M3V9lChoBkdAN1UcXFcY7GgHS7VoCEdAm9B0K7ZnMHV9lChoBkdAcvJ6IFeOXGgHTRIBaAhHQJvQh19v0iB1fZQoaAZHQHFgOQ+2VmloB01KAWgIR0Cb0Js2vStvdX2UKGgGR0By09ocrAgxaAdNGQFoCEdAm9GW9Htnf3V9lChoBkdAcIdr30wrUmgHTQgCaAhHQJvSLq/ub7V1fZQoaAZHQG9uLW7OE/VoB00/AWgIR0Cb0q0ulGgBdX2UKGgGR0BwuxkFwDNhaAdNOgFoCEdAm9LwHRkVe3V9lChoBkdAc0caUiY9gWgHTZEBaAhHQJvTngsK9f11fZQoaAZHQHD7BQm/nGNoB007AWgIR0Cb1Fxb0OEvdX2UKGgGR0BtL4lv60pmaAdNYAFoCEdAm9U6jN6gNHV9lChoBkdAS9AyRB/qgWgHTQcBaAhHQJvXFeQdS2p1fZQoaAZHQHHhTbvgFX9oB00eAWgIR0Cb15IdELH/dX2UKGgGR0ByHdXJYDDCaAdNOwFoCEdAm9jql1r6+HV9lChoBkdAcTysPJ7swGgHTRIBaAhHQJvY/A+IM0B1fZQoaAZHQG/3Ieo1k2BoB02UAWgIR0Cb2TGYa5wwdX2UKGgGR0Bw9klLOAy3aAdNOQFoCEdAm9ouE25xznV9lChoBkdAcNufFaSs82gHTTYBaAhHQJvaPsPatcR1fZQoaAZHQHKgtKIznA9oB01dAWgIR0Cb24rWRRuTdX2UKGgGR0BwBXCgsbvPaAdNbwFoCEdAm9ucDW9UTHV9lChoBkdAcjZDx9XtB2gHTTUBaAhHQJvb3wtrbg11fZQoaAZHQHLRQA+6iCdoB01QAWgIR0Cb3B3hXKbKdX2UKGgGR0BufkmjTKDDaAdNPAFoCEdAm9ys3Mpw0nV9lChoBkdAcw/HAymALGgHTRwBaAhHQJvdLrs0HhV1fZQoaAZHQHKO7eANG3FoB01FAWgIR0Cb3ZF4LThHdX2UKGgGR0BuaxblijL0aAdNOwFoCEdAm97xE8aGYnV9lChoBkdAcxYpJf6XSmgHTS8BaAhHQJvg1HmRvFZ1fZQoaAZHQHIXchPj4pNoB030AWgIR0Cb4h3PzFuOdX2UKGgGR0ByKBGCqZMMaAdNLwFoCEdAm+IzIV/MGHV9lChoBkdAcXX84PwuumgHTQwBaAhHQJviT531SO11fZQoaAZHQG8IpN9H+ZRoB010AWgIR0Cb4tGR3eN2dX2UKGgGR0BwmdrzoUzsaAdL9WgIR0Cb4xMZxaPkdX2UKGgGR0ByLnzz3AVPaAdNNwFoCEdAm+PXbuc+aHV9lChoBkdAU6m/N7jT8mgHS9hoCEdAm+QoPoV2zXV9lChoBkdAcL26T4cm0GgHTW8BaAhHQJvkaQmu1Wt1fZQoaAZHQHGoauW8h9toB00lAWgIR0Cb5JaisXBQdX2UKGgGR0Bt6Rj4HoovaAdNHQFoCEdAm+T1tTDO1XV9lChoBkdAbul9LpRoAWgHTTkBaAhHQJvlghC+lCV1ZS4="
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 252,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 16,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8aca8da8cb4362b7bb6c815493533410b41eb942fb195e93c53dc62d0f1256be
3
+ size 88362
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:534c3160e2023a2c3fac42a8178eea11b3dc77981630fdafb541cf904ff7cb3a
3
+ size 43762
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
3
+ size 864
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.4.1+cu121
5
+ - GPU Enabled: True
6
+ - Numpy: 1.26.4
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 ADDED
Binary file (194 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 238.0817157, "std_reward": 17.00579860875699, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-09-24T02:08:55.377597"}