File size: 3,344 Bytes
ee90e51
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
---
license: cc-by-4.0
library_name: peft
tags:
- generated_from_trainer
metrics:
- accuracy
base_model: deepset/roberta-base-squad2
model-index:
- name: STS-Lora-Fine-Tuning-Capstone-roberta-base-deepset-filtered-115-with-higher-r-mid
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# STS-Lora-Fine-Tuning-Capstone-roberta-base-deepset-filtered-115-with-higher-r-mid

This model is a fine-tuned version of [deepset/roberta-base-squad2](https://huggingface.co/deepset/roberta-base-squad2) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9056
- Accuracy: 0.6040

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 30

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log        | 1.0   | 76   | 1.2568          | 0.4161   |
| No log        | 2.0   | 152  | 1.1655          | 0.4603   |
| No log        | 3.0   | 228  | 1.0574          | 0.5120   |
| No log        | 4.0   | 304  | 0.9846          | 0.5574   |
| No log        | 5.0   | 380  | 0.9665          | 0.5675   |
| No log        | 6.0   | 456  | 0.9544          | 0.5738   |
| 1.0456        | 7.0   | 532  | 0.9503          | 0.5763   |
| 1.0456        | 8.0   | 608  | 0.9269          | 0.5876   |
| 1.0456        | 9.0   | 684  | 0.9233          | 0.5889   |
| 1.0456        | 10.0  | 760  | 0.9264          | 0.5927   |
| 1.0456        | 11.0  | 836  | 0.9092          | 0.5927   |
| 1.0456        | 12.0  | 912  | 0.9187          | 0.5914   |
| 1.0456        | 13.0  | 988  | 0.9122          | 0.6003   |
| 0.8486        | 14.0  | 1064 | 0.9091          | 0.5977   |
| 0.8486        | 15.0  | 1140 | 0.9079          | 0.5965   |
| 0.8486        | 16.0  | 1216 | 0.9144          | 0.5952   |
| 0.8486        | 17.0  | 1292 | 0.9049          | 0.5977   |
| 0.8486        | 18.0  | 1368 | 0.9257          | 0.5939   |
| 0.8486        | 19.0  | 1444 | 0.9006          | 0.5952   |
| 0.8112        | 20.0  | 1520 | 0.9008          | 0.6015   |
| 0.8112        | 21.0  | 1596 | 0.9044          | 0.6040   |
| 0.8112        | 22.0  | 1672 | 0.9008          | 0.6053   |
| 0.8112        | 23.0  | 1748 | 0.9052          | 0.6028   |
| 0.8112        | 24.0  | 1824 | 0.9065          | 0.6028   |
| 0.8112        | 25.0  | 1900 | 0.9015          | 0.6053   |
| 0.8112        | 26.0  | 1976 | 0.9141          | 0.5965   |
| 0.7992        | 27.0  | 2052 | 0.9072          | 0.6053   |
| 0.7992        | 28.0  | 2128 | 0.9042          | 0.6053   |
| 0.7992        | 29.0  | 2204 | 0.9054          | 0.6040   |
| 0.7992        | 30.0  | 2280 | 0.9056          | 0.6040   |


### Framework versions

- PEFT 0.10.0
- Transformers 4.38.2
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2