rajistics commited on
Commit
893860f
·
1 Parent(s): 347ef2c

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +104 -0
README.md ADDED
@@ -0,0 +1,104 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: cc-by-nc-sa-4.0
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - cord-layoutlmv3
7
+ metrics:
8
+ - precision
9
+ - recall
10
+ - f1
11
+ - accuracy
12
+ model-index:
13
+ - name: layoutlmv3-finetuned-cord_300
14
+ results:
15
+ - task:
16
+ name: Token Classification
17
+ type: token-classification
18
+ dataset:
19
+ name: cord-layoutlmv3
20
+ type: cord-layoutlmv3
21
+ config: cord
22
+ split: train
23
+ args: cord
24
+ metrics:
25
+ - name: Precision
26
+ type: precision
27
+ value: 0.9325426241660489
28
+ - name: Recall
29
+ type: recall
30
+ value: 0.9416167664670658
31
+ - name: F1
32
+ type: f1
33
+ value: 0.9370577281191806
34
+ - name: Accuracy
35
+ type: accuracy
36
+ value: 0.9363327674023769
37
+ ---
38
+
39
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
40
+ should probably proofread and complete it, then remove this comment. -->
41
+
42
+ # layoutlmv3-finetuned-cord_300
43
+
44
+ This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the cord-layoutlmv3 dataset.
45
+ It achieves the following results on the evaluation set:
46
+ - Loss: 0.3434
47
+ - Precision: 0.9325
48
+ - Recall: 0.9416
49
+ - F1: 0.9371
50
+ - Accuracy: 0.9363
51
+
52
+ ## Model description
53
+
54
+ More information needed
55
+
56
+ ## Intended uses & limitations
57
+
58
+ More information needed
59
+
60
+ ## Training and evaluation data
61
+
62
+ More information needed
63
+
64
+ ## Training procedure
65
+
66
+ ### Training hyperparameters
67
+
68
+ The following hyperparameters were used during training:
69
+ - learning_rate: 1e-05
70
+ - train_batch_size: 5
71
+ - eval_batch_size: 5
72
+ - seed: 42
73
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
74
+ - lr_scheduler_type: linear
75
+ - training_steps: 4000
76
+
77
+ ### Training results
78
+
79
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
80
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
81
+ | No log | 4.17 | 250 | 1.0379 | 0.7204 | 0.7829 | 0.7504 | 0.7941 |
82
+ | 1.4162 | 8.33 | 500 | 0.5642 | 0.8462 | 0.8772 | 0.8614 | 0.8820 |
83
+ | 1.4162 | 12.5 | 750 | 0.3836 | 0.9055 | 0.9184 | 0.9119 | 0.9206 |
84
+ | 0.3211 | 16.67 | 1000 | 0.3209 | 0.9139 | 0.9296 | 0.9217 | 0.9334 |
85
+ | 0.3211 | 20.83 | 1250 | 0.2962 | 0.9275 | 0.9386 | 0.9330 | 0.9435 |
86
+ | 0.1191 | 25.0 | 1500 | 0.2979 | 0.9254 | 0.9379 | 0.9316 | 0.9402 |
87
+ | 0.1191 | 29.17 | 1750 | 0.3079 | 0.9282 | 0.9386 | 0.9334 | 0.9355 |
88
+ | 0.059 | 33.33 | 2000 | 0.3039 | 0.9232 | 0.9364 | 0.9298 | 0.9325 |
89
+ | 0.059 | 37.5 | 2250 | 0.3254 | 0.9248 | 0.9386 | 0.9316 | 0.9355 |
90
+ | 0.0342 | 41.67 | 2500 | 0.3404 | 0.9246 | 0.9364 | 0.9305 | 0.9334 |
91
+ | 0.0342 | 45.83 | 2750 | 0.3386 | 0.9354 | 0.9431 | 0.9392 | 0.9355 |
92
+ | 0.0226 | 50.0 | 3000 | 0.3274 | 0.9354 | 0.9431 | 0.9392 | 0.9359 |
93
+ | 0.0226 | 54.17 | 3250 | 0.3282 | 0.9341 | 0.9446 | 0.9393 | 0.9393 |
94
+ | 0.017 | 58.33 | 3500 | 0.3475 | 0.9319 | 0.9424 | 0.9371 | 0.9363 |
95
+ | 0.017 | 62.5 | 3750 | 0.3367 | 0.9340 | 0.9431 | 0.9385 | 0.9372 |
96
+ | 0.0145 | 66.67 | 4000 | 0.3434 | 0.9325 | 0.9416 | 0.9371 | 0.9363 |
97
+
98
+
99
+ ### Framework versions
100
+
101
+ - Transformers 4.21.2
102
+ - Pytorch 1.12.1+cu113
103
+ - Datasets 2.4.0
104
+ - Tokenizers 0.12.1