update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,104 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: cc-by-nc-sa-4.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
datasets:
|
6 |
+
- cord-layoutlmv3
|
7 |
+
metrics:
|
8 |
+
- precision
|
9 |
+
- recall
|
10 |
+
- f1
|
11 |
+
- accuracy
|
12 |
+
model-index:
|
13 |
+
- name: layoutlmv3-finetuned-cord_500
|
14 |
+
results:
|
15 |
+
- task:
|
16 |
+
name: Token Classification
|
17 |
+
type: token-classification
|
18 |
+
dataset:
|
19 |
+
name: cord-layoutlmv3
|
20 |
+
type: cord-layoutlmv3
|
21 |
+
config: cord
|
22 |
+
split: train
|
23 |
+
args: cord
|
24 |
+
metrics:
|
25 |
+
- name: Precision
|
26 |
+
type: precision
|
27 |
+
value: 0.9509293680297398
|
28 |
+
- name: Recall
|
29 |
+
type: recall
|
30 |
+
value: 0.9573353293413174
|
31 |
+
- name: F1
|
32 |
+
type: f1
|
33 |
+
value: 0.9541215964192465
|
34 |
+
- name: Accuracy
|
35 |
+
type: accuracy
|
36 |
+
value: 0.9609507640067911
|
37 |
+
---
|
38 |
+
|
39 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
40 |
+
should probably proofread and complete it, then remove this comment. -->
|
41 |
+
|
42 |
+
# layoutlmv3-finetuned-cord_500
|
43 |
+
|
44 |
+
This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the cord-layoutlmv3 dataset.
|
45 |
+
It achieves the following results on the evaluation set:
|
46 |
+
- Loss: 0.2339
|
47 |
+
- Precision: 0.9509
|
48 |
+
- Recall: 0.9573
|
49 |
+
- F1: 0.9541
|
50 |
+
- Accuracy: 0.9610
|
51 |
+
|
52 |
+
## Model description
|
53 |
+
|
54 |
+
More information needed
|
55 |
+
|
56 |
+
## Intended uses & limitations
|
57 |
+
|
58 |
+
More information needed
|
59 |
+
|
60 |
+
## Training and evaluation data
|
61 |
+
|
62 |
+
More information needed
|
63 |
+
|
64 |
+
## Training procedure
|
65 |
+
|
66 |
+
### Training hyperparameters
|
67 |
+
|
68 |
+
The following hyperparameters were used during training:
|
69 |
+
- learning_rate: 1e-05
|
70 |
+
- train_batch_size: 5
|
71 |
+
- eval_batch_size: 5
|
72 |
+
- seed: 42
|
73 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
74 |
+
- lr_scheduler_type: linear
|
75 |
+
- training_steps: 4000
|
76 |
+
|
77 |
+
### Training results
|
78 |
+
|
79 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
80 |
+
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
81 |
+
| No log | 2.5 | 250 | 0.9950 | 0.7114 | 0.7784 | 0.7434 | 0.7903 |
|
82 |
+
| 1.3831 | 5.0 | 500 | 0.5152 | 0.8483 | 0.8787 | 0.8632 | 0.8816 |
|
83 |
+
| 1.3831 | 7.5 | 750 | 0.3683 | 0.9013 | 0.9154 | 0.9083 | 0.9240 |
|
84 |
+
| 0.3551 | 10.0 | 1000 | 0.3051 | 0.9201 | 0.9304 | 0.9252 | 0.9363 |
|
85 |
+
| 0.3551 | 12.5 | 1250 | 0.2636 | 0.9375 | 0.9424 | 0.9399 | 0.9457 |
|
86 |
+
| 0.1562 | 15.0 | 1500 | 0.2498 | 0.9385 | 0.9476 | 0.9430 | 0.9508 |
|
87 |
+
| 0.1562 | 17.5 | 1750 | 0.2380 | 0.9414 | 0.9499 | 0.9456 | 0.9559 |
|
88 |
+
| 0.0863 | 20.0 | 2000 | 0.2355 | 0.9400 | 0.9491 | 0.9445 | 0.9542 |
|
89 |
+
| 0.0863 | 22.5 | 2250 | 0.2268 | 0.9451 | 0.9536 | 0.9493 | 0.9601 |
|
90 |
+
| 0.0512 | 25.0 | 2500 | 0.2277 | 0.9429 | 0.9513 | 0.9471 | 0.9588 |
|
91 |
+
| 0.0512 | 27.5 | 2750 | 0.2315 | 0.9473 | 0.9551 | 0.9512 | 0.9593 |
|
92 |
+
| 0.0358 | 30.0 | 3000 | 0.2294 | 0.9509 | 0.9573 | 0.9541 | 0.9605 |
|
93 |
+
| 0.0358 | 32.5 | 3250 | 0.2330 | 0.9458 | 0.9543 | 0.9501 | 0.9593 |
|
94 |
+
| 0.028 | 35.0 | 3500 | 0.2374 | 0.9487 | 0.9558 | 0.9523 | 0.9597 |
|
95 |
+
| 0.028 | 37.5 | 3750 | 0.2374 | 0.9501 | 0.9558 | 0.9530 | 0.9593 |
|
96 |
+
| 0.0244 | 40.0 | 4000 | 0.2339 | 0.9509 | 0.9573 | 0.9541 | 0.9610 |
|
97 |
+
|
98 |
+
|
99 |
+
### Framework versions
|
100 |
+
|
101 |
+
- Transformers 4.21.2
|
102 |
+
- Pytorch 1.12.1+cu113
|
103 |
+
- Datasets 2.4.0
|
104 |
+
- Tokenizers 0.12.1
|