File size: 1,737 Bytes
62a4bc4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
---
license: cc-by-sa-4.0
base_model: raminass/scotus-v10
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: SCOTUS_AI_V15
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# SCOTUS_AI_V15

This model is a fine-tuned version of [raminass/scotus-v10](https://huggingface.co/raminass/scotus-v10) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0214
- Accuracy: 0.9954

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 7

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
| 0.6856        | 1.0   | 2504  | 0.4083          | 0.8876   |
| 0.4313        | 2.0   | 5008  | 0.2375          | 0.9321   |
| 0.2564        | 3.0   | 7512  | 0.1136          | 0.9686   |
| 0.1662        | 4.0   | 10016 | 0.0553          | 0.9863   |
| 0.0966        | 5.0   | 12520 | 0.0432          | 0.9889   |
| 0.0604        | 6.0   | 15024 | 0.0278          | 0.9935   |
| 0.0372        | 7.0   | 17528 | 0.0214          | 0.9954   |


### Framework versions

- Transformers 4.38.2
- Pytorch 2.1.0+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2