File size: 1,747 Bytes
cd42e97
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
---
license: cc-by-sa-4.0
base_model: raminass/scotus-v10
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: SCOTUS_AI_V17_EVAL
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# SCOTUS_AI_V17_EVAL

This model is a fine-tuned version of [raminass/scotus-v10](https://huggingface.co/raminass/scotus-v10) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.3780
- Accuracy: 0.7424

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 7

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
| 0.7601        | 1.0   | 2170  | 0.9876          | 0.7125   |
| 0.424         | 2.0   | 4340  | 0.9416          | 0.7402   |
| 0.234         | 3.0   | 6510  | 1.0710          | 0.7331   |
| 0.1468        | 4.0   | 8680  | 1.1802          | 0.7372   |
| 0.0919        | 5.0   | 10850 | 1.2363          | 0.7443   |
| 0.0641        | 6.0   | 13020 | 1.3653          | 0.7396   |
| 0.0393        | 7.0   | 15190 | 1.3780          | 0.7424   |


### Framework versions

- Transformers 4.38.2
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2