File size: 2,590 Bytes
79da5eb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
---
license: cc-by-sa-4.0
base_model: nlpaueb/legal-bert-small-uncased
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: scotus-v10
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# scotus-v10

This model is a fine-tuned version of [nlpaueb/legal-bert-small-uncased](https://huggingface.co/nlpaueb/legal-bert-small-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7971
- Accuracy: 0.8842

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
| 1.67          | 1.0   | 1219  | 1.3781          | 0.5718   |
| 1.1539        | 2.0   | 2438  | 0.9619          | 0.7077   |
| 0.6736        | 3.0   | 3657  | 0.7837          | 0.7668   |
| 0.4265        | 4.0   | 4876  | 0.5882          | 0.8309   |
| 0.2477        | 5.0   | 6095  | 0.5624          | 0.8446   |
| 0.1636        | 6.0   | 7314  | 0.5701          | 0.8542   |
| 0.0938        | 7.0   | 8533  | 0.6322          | 0.8603   |
| 0.0523        | 8.0   | 9752  | 0.6717          | 0.8606   |
| 0.0397        | 9.0   | 10971 | 0.6626          | 0.8738   |
| 0.0236        | 10.0  | 12190 | 0.6729          | 0.8811   |
| 0.0129        | 11.0  | 13409 | 0.7164          | 0.876    |
| 0.0098        | 12.0  | 14628 | 0.8041          | 0.8723   |
| 0.0066        | 13.0  | 15847 | 0.7792          | 0.8794   |
| 0.0055        | 14.0  | 17066 | 0.7704          | 0.8792   |
| 0.0032        | 15.0  | 18285 | 0.8369          | 0.8768   |
| 0.0023        | 16.0  | 19504 | 0.8685          | 0.8737   |
| 0.0012        | 17.0  | 20723 | 0.7631          | 0.888    |
| 0.0026        | 18.0  | 21942 | 0.8220          | 0.8808   |
| 0.0011        | 19.0  | 23161 | 0.7897          | 0.8845   |
| 0.0003        | 20.0  | 24380 | 0.7971          | 0.8842   |


### Framework versions

- Transformers 4.33.1
- Pytorch 2.0.1+cu118
- Datasets 2.14.5
- Tokenizers 0.13.3