File size: 2,703 Bytes
e5e7b4b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
---
license: mit
base_model: microsoft/layoutlm-base-uncased
tags:
- generated_from_keras_callback
model-index:
- name: layoutlm-funsd-tf
  results: []
---

<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->

# layoutlm-funsd-tf

This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.2552
- Validation Loss: 0.6563
- Train Overall Precision: 0.7174
- Train Overall Recall: 0.7988
- Train Overall F1: 0.7559
- Train Overall Accuracy: 0.8073
- Epoch: 7

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 3e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: mixed_float16

### Training results

| Train Loss | Validation Loss | Train Overall Precision | Train Overall Recall | Train Overall F1 | Train Overall Accuracy | Epoch |
|:----------:|:---------------:|:-----------------------:|:--------------------:|:----------------:|:----------------------:|:-----:|
| 1.7065     | 1.3937          | 0.2463                  | 0.2418               | 0.2441           | 0.5476                 | 0     |
| 1.1571     | 0.8921          | 0.6122                  | 0.6352               | 0.6235           | 0.7318                 | 1     |
| 0.7498     | 0.6885          | 0.6740                  | 0.7376               | 0.7044           | 0.7816                 | 2     |
| 0.5523     | 0.6299          | 0.6752                  | 0.7852               | 0.7260           | 0.8011                 | 3     |
| 0.4503     | 0.6387          | 0.6913                  | 0.7943               | 0.7392           | 0.8010                 | 4     |
| 0.3554     | 0.6279          | 0.7121                  | 0.7792               | 0.7441           | 0.8110                 | 5     |
| 0.3005     | 0.6507          | 0.7201                  | 0.7782               | 0.7480           | 0.8085                 | 6     |
| 0.2552     | 0.6563          | 0.7174                  | 0.7988               | 0.7559           | 0.8073                 | 7     |


### Framework versions

- Transformers 4.34.0
- TensorFlow 2.12.0
- Datasets 2.14.5
- Tokenizers 0.14.0