Upload PPO LunarLander-v2 trained agent
Browse files- .gitattributes +1 -0
- README.md +36 -0
- config.json +1 -0
- ppo-LinarLander-v2.zip +3 -0
- ppo-LinarLander-v2/_stable_baselines3_version +1 -0
- ppo-LinarLander-v2/data +94 -0
- ppo-LinarLander-v2/policy.optimizer.pth +3 -0
- ppo-LinarLander-v2/policy.pth +3 -0
- ppo-LinarLander-v2/pytorch_variables.pth +3 -0
- ppo-LinarLander-v2/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 215.02 +/- 21.32
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
25 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
26 |
+
|
27 |
+
## Usage (with Stable-baselines3)
|
28 |
+
TODO: Add your code
|
29 |
+
|
30 |
+
|
31 |
+
```python
|
32 |
+
from stable_baselines3 import ...
|
33 |
+
from huggingface_sb3 import load_from_hub
|
34 |
+
|
35 |
+
...
|
36 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x162363760>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x1623637f0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x162363880>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x162363910>", "_build": "<function ActorCriticPolicy._build at 0x1623639a0>", "forward": "<function ActorCriticPolicy.forward at 0x162363a30>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x162363ac0>", "_predict": "<function ActorCriticPolicy._predict at 0x162363b50>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x162363be0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x162363c70>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x162363d00>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x162223340>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1656875601.4338639, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV/wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGcvVXNlcnMvYWd1c3RpbmR5ZS8ucHllbnYvdmVyc2lvbnMvMy4xMC4yL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxnL1VzZXJzL2FndXN0aW5keWUvLnB5ZW52L3ZlcnNpb25zLzMuMTAuMi9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGggfZR9lChoF2gOjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGIwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAACZfhL39gII/ImbQvRTb6L7jK2a+EtIDPQAAAAAAAAAA5m14vercFj4noge9UIcXvv4GgL31lSi+AAAAAAAAAAAzaRu+p7w/P0ALS73RtIe+8Hb8Ow3jLj4AAAAAAAAAAGYsYD3sGdy5E/CXPDLYG7vhAxM6jRkIvAAAAAAAAIA/APzVvnGjWj/c3Mi8Ou/evuyOHb4hBZA+AAAAAAAAAABm44S8XM9yuEB5PrxPgKU8lFqYOWDxWbsAAIA/AACAP+NYYr5S3sY8ltZWvu5jhr4Y/Ie+yOxfPwAAgD8AAAAAmlK7PB/7sLtDLDG+cdL/PNiHDb1OSdM9AACAPwAAgD9Alpq9nBVHvOZSwjwiBYg8gmirPU6WX70AAIA/AACAP1sqgL44wty7Xj1VvE3mGDsLvDc9xlGQOgAAgD8AAIA/ZoXxPAorDDpqFz68ku7/vCHpTbkrbwI9AAAAAAAAAABWOYy+Csw0PNKBMzvXaS65azLIvcbrWLoAAIA/AACAP3NHqj32vCu6DhpuuoKJl7bjA946rzOLOQAAgD8AAIA/TTCgvRSUqbqi5X85XI5oNDROcLre8pK4AACAPwAAgD/zXWY+gXPdvEqauzwe/TS7Ld5BvsK1/LsAAIA/AACAP+3nFz72n3c7sDE9vK1/ObpB3RA9LtoluwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVbhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI9u/6zFlJTkCUhpRSlIwBbJRN6AOMAXSUR0CM0Vx95QgtdX2UKGgGaAloD0MIlMDmHDzcW8CUhpRSlGgVTZsBaBZHQIzpiVB2Ohl1fZQoaAZoCWgPQwgO95Fbk8BjQJSGlFKUaBVNfgNoFkdAjO9HlOoHcHV9lChoBmgJaA9DCP2/6siRoEJAlIaUUpRoFU3oA2gWR0CM9jgflp49dX2UKGgGaAloD0MIJT53gv0cV0CUhpRSlGgVTegDaBZHQI0DuM+/xlR1fZQoaAZoCWgPQwjpZKn1fupaQJSGlFKUaBVN6ANoFkdAjQXDKxLTQXV9lChoBmgJaA9DCCOCcXDpOltAlIaUUpRoFU3oA2gWR0CNC0VrRBu5dX2UKGgGaAloD0MI9Bd6xOjwX0CUhpRSlGgVTegDaBZHQI0Qpkqc3ER1fZQoaAZoCWgPQwjjqrLviq5ZQJSGlFKUaBVN6ANoFkdAjRw863iJf3V9lChoBmgJaA9DCH+ismFNSGZAlIaUUpRoFU3oA2gWR0CNHujfvWpZdX2UKGgGaAloD0MI/TOD+MAnUECUhpRSlGgVTegDaBZHQI0gq+g13t91fZQoaAZoCWgPQwivB5Pi4xVfQJSGlFKUaBVN6ANoFkdAjSJdf9gndHV9lChoBmgJaA9DCNuF5jqNNFtAlIaUUpRoFU3oA2gWR0CNJoJIDoyLdX2UKGgGaAloD0MIZK93f7z6XUCUhpRSlGgVTegDaBZHQI0m484gieN1fZQoaAZoCWgPQwhi+IiYEuReQJSGlFKUaBVN6ANoFkdAjTEn+6y0KXV9lChoBmgJaA9DCNLCZRU2KFhAlIaUUpRoFU3oA2gWR0CNMxVvuPV/dX2UKGgGaAloD0MIpWWk3lPxIUCUhpRSlGgVTegDaBZHQI01OEf1Yhd1fZQoaAZoCWgPQwiCyY0i6yxgQJSGlFKUaBVN6ANoFkdAjVBNkWhysHV9lChoBmgJaA9DCHPYfcfwBFJAlIaUUpRoFU3oA2gWR0CNVa8g6ltTdX2UKGgGaAloD0MIH7sLlJQWYUCUhpRSlGgVTegDaBZHQI1cPO+qR2d1fZQoaAZoCWgPQwhLrmLxm0hhQJSGlFKUaBVN6ANoFkdAjWjlr2xptnV9lChoBmgJaA9DCDlE3JxKuVdAlIaUUpRoFU3oA2gWR0CNatLFGXoldX2UKGgGaAloD0MIH7sLlBS/X0CUhpRSlGgVTegDaBZHQI1wKGFi8Wd1fZQoaAZoCWgPQwiSBUzg1hlJQJSGlFKUaBVN6ANoFkdAjXWpQ+EAYHV9lChoBmgJaA9DCNiC3htD4APAlIaUUpRoFU0lAWgWR0CNeaW2PT5PdX2UKGgGaAloD0MIF9aNd0dWXUCUhpRSlGgVTegDaBZHQI2BrWoWHk91fZQoaAZoCWgPQwjt9IO6SHEWQJSGlFKUaBVNCQFoFkdAjYMHFHavinV9lChoBmgJaA9DCCzzVl2Hbk9AlIaUUpRoFU3oA2gWR0CNhEAjps42dX2UKGgGaAloD0MIj2yumueARUCUhpRSlGgVTQcBaBZHQI2EoI4VARl1fZQoaAZoCWgPQwgFw7mGGbRTQJSGlFKUaBVN6ANoFkdAjYXzspoboHV9lChoBmgJaA9DCPwBDwwgo1hAlIaUUpRoFU3oA2gWR0CNh5iS7oStdX2UKGgGaAloD0MIuagWEcXEIMCUhpRSlGgVS9JoFkdAjYk4ixFAmnV9lChoBmgJaA9DCChGlswx2GJAlIaUUpRoFU3oA2gWR0CNi2p/gBLgdX2UKGgGaAloD0MIxlG5iVpMWkCUhpRSlGgVTegDaBZHQI2Lw0j1PFh1fZQoaAZoCWgPQwjUfQBSm0tVQJSGlFKUaBVN6ANoFkdAjY4bgKnei3V9lChoBmgJaA9DCBJPdjOj/GFAlIaUUpRoFU3oA2gWR0CNl20hvBJqdX2UKGgGaAloD0MIYFs//WdzWkCUhpRSlGgVTegDaBZHQI2ZGejEehh1fZQoaAZoCWgPQwhe2QWDa241wJSGlFKUaBVNEAFoFkdAjZ0kKu0TlHV9lChoBmgJaA9DCF+X4T/dVE7AlIaUUpRoFU0EAWgWR0CNnTMSK3uvdX2UKGgGaAloD0MIcm4T7pV5DsCUhpRSlGgVS85oFkdAjZ9pd8iOenV9lChoBmgJaA9DCHDSNCiaZxZAlIaUUpRoFUvgaBZHQI2g6ih37k51fZQoaAZoCWgPQwiR1ELJ5Kg3QJSGlFKUaBVL1GgWR0CNpEf16E8JdX2UKGgGaAloD0MIC0YldQIkSkCUhpRSlGgVS8hoFkdAjat9mYjSonV9lChoBmgJaA9DCOVjd4GS0inAlIaUUpRoFUvYaBZHQI2svpUxVQ11fZQoaAZoCWgPQwjYEByXcflYQJSGlFKUaBVN6ANoFkdAja0p8F6iTXV9lChoBmgJaA9DCPIolfCEzirAlIaUUpRoFUviaBZHQI2waoybhFV1fZQoaAZoCWgPQwjLEwg7xRpCQJSGlFKUaBVLzWgWR0CNsJPN3W4FdX2UKGgGaAloD0MIfzScMjcDZUCUhpRSlGgVTegDaBZHQI2xTpHI6sB1fZQoaAZoCWgPQwimf0kqU8BpQJSGlFKUaBVNGANoFkdAjbUlvQ4S6HV9lChoBmgJaA9DCDc10HzOoTlAlIaUUpRoFUvbaBZHQI290h9srNJ1fZQoaAZoCWgPQwgiUz4EVYMOQJSGlFKUaBVNTwFoFkdAjb4j2SMcZXV9lChoBmgJaA9DCBPvAE9aIDXAlIaUUpRoFUvmaBZHQI3IOk30f5l1fZQoaAZoCWgPQwh39SoyOjheQJSGlFKUaBVN6ANoFkdAjc+0t7KJVXV9lChoBmgJaA9DCHRGlPYGwV5AlIaUUpRoFU3oA2gWR0CN16SFoL5RdX2UKGgGaAloD0MIhugQOBLDWECUhpRSlGgVTegDaBZHQI3arUutfXx1fZQoaAZoCWgPQwjDLooe+BFVQJSGlFKUaBVN6ANoFkdAjdwGbkOqenV9lChoBmgJaA9DCAWk/Q8wDWJAlIaUUpRoFU3oA2gWR0CN3ZR3NcGDdX2UKGgGaAloD0MI+WUwRiQGW0CUhpRSlGgVTegDaBZHQI3fJWT5ftx1fZQoaAZoCWgPQwidhT3t8LtYQJSGlFKUaBVN6ANoFkdAjePzXz19OXV9lChoBmgJaA9DCMssQrEVPVVAlIaUUpRoFU3oA2gWR0CN759MK1G9dX2UKGgGaAloD0MIntFWJZHtR0CUhpRSlGgVS8ZoFkdAjfUOF6AvtnV9lChoBmgJaA9DCPZ8zXLZ7VtAlIaUUpRoFU3oA2gWR0COBnPrv9cbdX2UKGgGaAloD0MIlWJH41DzX0CUhpRSlGgVTegDaBZHQI4HyySmqHZ1fZQoaAZoCWgPQwiInL6er7FZQJSGlFKUaBVN6ANoFkdAjguzfR/mT3V9lChoBmgJaA9DCOMYyR6hmFxAlIaUUpRoFU3oA2gWR0COC9xmTTvzdX2UKGgGaAloD0MIqMXgYdrCXkCUhpRSlGgVTegDaBZHQI4Mg8nuy/t1fZQoaAZoCWgPQwhdiNUf4b9qQJSGlFKUaBVNOQJoFkdAjhHC1JDmbXV9lChoBmgJaA9DCGnk84onEWJAlIaUUpRoFU3oA2gWR0COGD+jM3ZPdX2UKGgGaAloD0MII6DCEaQXWECUhpRSlGgVTegDaBZHQI4Yh4fOlft1fZQoaAZoCWgPQwgYmYBfI4VoQJSGlFKUaBVN+gJoFkdAjh5QaBI4EXV9lChoBmgJaA9DCGtJRzmYo11AlIaUUpRoFU3oA2gWR0COIRKoybhFdX2UKGgGaAloD0MIbHnleltyYUCUhpRSlGgVTegDaBZHQI4muznied11fZQoaAZoCWgPQwjSNZNvtkE9QJSGlFKUaBVL4GgWR0COKVUQTVUddX2UKGgGaAloD0MI8L4qFyo9W0CUhpRSlGgVTegDaBZHQI4s++23KCB1fZQoaAZoCWgPQwh8C+vGu6NhQJSGlFKUaBVN6ANoFkdAji81+iJwbXV9lChoBmgJaA9DCGzsEtXbiG1AlIaUUpRoFU3sAWgWR0COMAhXbM5fdX2UKGgGaAloD0MI6LtbWaJzJUCUhpRSlGgVS/RoFkdAjjMYdZJTVHV9lChoBmgJaA9DCM7fhEIE3D9AlIaUUpRoFUvNaBZHQI44KhakhzN1fZQoaAZoCWgPQwhm2ZPAZpdiQJSGlFKUaBVN6ANoFkdAjjgstK7I1nV9lChoBmgJaA9DCFIMkGgCulxAlIaUUpRoFU3oA2gWR0COO9odMj/udX2UKGgGaAloD0MICyk/qfZUYECUhpRSlGgVTegDaBZHQI5Itr0rbxp1fZQoaAZoCWgPQwiELXb7rDLcv5SGlFKUaBVLymgWR0COU2HBUJfIdX2UKGgGaAloD0MIH75MFCFdP0CUhpRSlGgVTegDaBZHQI5aIVmBe5Z1fZQoaAZoCWgPQwgQIa6cPf1jQJSGlFKUaBVN6ANoFkdAjluFxXGOuXV9lChoBmgJaA9DCKxUUFH10V1AlIaUUpRoFU3oA2gWR0COX7wSamXPdX2UKGgGaAloD0MIkq6ZfDMNaUCUhpRSlGgVTegDaBZHQI5gqSDAaeh1fZQoaAZoCWgPQwjTn/1IETdjQJSGlFKUaBVN6ANoFkdAjmZveP7vX3V9lChoBmgJaA9DCJUQrKqXpyRAlIaUUpRoFUvWaBZHQI5shcu8K5V1fZQoaAZoCWgPQwiCqWbW0l1hQJSGlFKUaBVN6ANoFkdAjm1Ry4nWrnV9lChoBmgJaA9DCLA5B88EGGBAlIaUUpRoFU3oA2gWR0COc9bzK9wndX2UKGgGaAloD0MI+5P43AliYECUhpRSlGgVTegDaBZHQI59bTH80k51fZQoaAZoCWgPQwiJmujzURhAQJSGlFKUaBVL12gWR0COf2TINmUXdX2UKGgGaAloD0MIPKOtSiIrXkCUhpRSlGgVTegDaBZHQI6EkunMt9R1fZQoaAZoCWgPQwiHGK95VUFiQJSGlFKUaBVN6ANoFkdAjodrJCBwuXV9lChoBmgJaA9DCGowDcNHSmJAlIaUUpRoFU3oA2gWR0COiGGD+R5kdX2UKGgGaAloD0MINGlTdQ9WYkCUhpRSlGgVTegDaBZHQI6L0SIxgzB1fZQoaAZoCWgPQwiloxzMJrhMQJSGlFKUaBVLsWgWR0COjGwLVnVYdX2UKGgGaAloD0MIrwrUYvC8W0CUhpRSlGgVTegDaBZHQI6Q/geii7F1fZQoaAZoCWgPQwiOkIE8uyRXQJSGlFKUaBVN6ANoFkdAjpEBRZU1h3V9lChoBmgJaA9DCISaIVUULxFAlIaUUpRoFUvOaBZHQI6UK31BdD91ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV/wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGcvVXNlcnMvYWd1c3RpbmR5ZS8ucHllbnYvdmVyc2lvbnMvMy4xMC4yL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxnL1VzZXJzL2FndXN0aW5keWUvLnB5ZW52L3ZlcnNpb25zLzMuMTAuMi9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGggfZR9lChoF2gOjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGIwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "macOS-12.3.1-arm64-arm-64bit Darwin Kernel Version 21.4.0: Fri Mar 18 00:46:32 PDT 2022; root:xnu-8020.101.4~15/RELEASE_ARM64_T6000", "Python": "3.10.2", "Stable-Baselines3": "1.5.0", "PyTorch": "1.13.0.dev20220610", "GPU Enabled": "False", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
ppo-LinarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6e95ff1a8c5e8469384e787613146742128e4806f104933e925ae139044fec53
|
3 |
+
size 146749
|
ppo-LinarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
ppo-LinarLander-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x162363760>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x1623637f0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x162363880>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x162363910>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x1623639a0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x162363a30>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x162363ac0>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x162363b50>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x162363be0>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x162363c70>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x162363d00>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc._abc_data object at 0x162223340>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 507904,
|
46 |
+
"_total_timesteps": 500000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1656875601.4338639,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWV/wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGcvVXNlcnMvYWd1c3RpbmR5ZS8ucHllbnYvdmVyc2lvbnMvMy4xMC4yL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxnL1VzZXJzL2FndXN0aW5keWUvLnB5ZW52L3ZlcnNpb25zLzMuMTAuMi9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGggfZR9lChoF2gOjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGIwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAACZfhL39gII/ImbQvRTb6L7jK2a+EtIDPQAAAAAAAAAA5m14vercFj4noge9UIcXvv4GgL31lSi+AAAAAAAAAAAzaRu+p7w/P0ALS73RtIe+8Hb8Ow3jLj4AAAAAAAAAAGYsYD3sGdy5E/CXPDLYG7vhAxM6jRkIvAAAAAAAAIA/APzVvnGjWj/c3Mi8Ou/evuyOHb4hBZA+AAAAAAAAAABm44S8XM9yuEB5PrxPgKU8lFqYOWDxWbsAAIA/AACAP+NYYr5S3sY8ltZWvu5jhr4Y/Ie+yOxfPwAAgD8AAAAAmlK7PB/7sLtDLDG+cdL/PNiHDb1OSdM9AACAPwAAgD9Alpq9nBVHvOZSwjwiBYg8gmirPU6WX70AAIA/AACAP1sqgL44wty7Xj1VvE3mGDsLvDc9xlGQOgAAgD8AAIA/ZoXxPAorDDpqFz68ku7/vCHpTbkrbwI9AAAAAAAAAABWOYy+Csw0PNKBMzvXaS65azLIvcbrWLoAAIA/AACAP3NHqj32vCu6DhpuuoKJl7bjA946rzOLOQAAgD8AAIA/TTCgvRSUqbqi5X85XI5oNDROcLre8pK4AACAPwAAgD/zXWY+gXPdvEqauzwe/TS7Ld5BvsK1/LsAAIA/AACAP+3nFz72n3c7sDE9vK1/ObpB3RA9LtoluwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.015808000000000044,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVbhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI9u/6zFlJTkCUhpRSlIwBbJRN6AOMAXSUR0CM0Vx95QgtdX2UKGgGaAloD0MIlMDmHDzcW8CUhpRSlGgVTZsBaBZHQIzpiVB2Ohl1fZQoaAZoCWgPQwgO95Fbk8BjQJSGlFKUaBVNfgNoFkdAjO9HlOoHcHV9lChoBmgJaA9DCP2/6siRoEJAlIaUUpRoFU3oA2gWR0CM9jgflp49dX2UKGgGaAloD0MIJT53gv0cV0CUhpRSlGgVTegDaBZHQI0DuM+/xlR1fZQoaAZoCWgPQwjpZKn1fupaQJSGlFKUaBVN6ANoFkdAjQXDKxLTQXV9lChoBmgJaA9DCCOCcXDpOltAlIaUUpRoFU3oA2gWR0CNC0VrRBu5dX2UKGgGaAloD0MI9Bd6xOjwX0CUhpRSlGgVTegDaBZHQI0Qpkqc3ER1fZQoaAZoCWgPQwjjqrLviq5ZQJSGlFKUaBVN6ANoFkdAjRw863iJf3V9lChoBmgJaA9DCH+ismFNSGZAlIaUUpRoFU3oA2gWR0CNHujfvWpZdX2UKGgGaAloD0MI/TOD+MAnUECUhpRSlGgVTegDaBZHQI0gq+g13t91fZQoaAZoCWgPQwivB5Pi4xVfQJSGlFKUaBVN6ANoFkdAjSJdf9gndHV9lChoBmgJaA9DCNuF5jqNNFtAlIaUUpRoFU3oA2gWR0CNJoJIDoyLdX2UKGgGaAloD0MIZK93f7z6XUCUhpRSlGgVTegDaBZHQI0m484gieN1fZQoaAZoCWgPQwhi+IiYEuReQJSGlFKUaBVN6ANoFkdAjTEn+6y0KXV9lChoBmgJaA9DCNLCZRU2KFhAlIaUUpRoFU3oA2gWR0CNMxVvuPV/dX2UKGgGaAloD0MIpWWk3lPxIUCUhpRSlGgVTegDaBZHQI01OEf1Yhd1fZQoaAZoCWgPQwiCyY0i6yxgQJSGlFKUaBVN6ANoFkdAjVBNkWhysHV9lChoBmgJaA9DCHPYfcfwBFJAlIaUUpRoFU3oA2gWR0CNVa8g6ltTdX2UKGgGaAloD0MIH7sLlJQWYUCUhpRSlGgVTegDaBZHQI1cPO+qR2d1fZQoaAZoCWgPQwhLrmLxm0hhQJSGlFKUaBVN6ANoFkdAjWjlr2xptnV9lChoBmgJaA9DCDlE3JxKuVdAlIaUUpRoFU3oA2gWR0CNatLFGXoldX2UKGgGaAloD0MIH7sLlBS/X0CUhpRSlGgVTegDaBZHQI1wKGFi8Wd1fZQoaAZoCWgPQwiSBUzg1hlJQJSGlFKUaBVN6ANoFkdAjXWpQ+EAYHV9lChoBmgJaA9DCNiC3htD4APAlIaUUpRoFU0lAWgWR0CNeaW2PT5PdX2UKGgGaAloD0MIF9aNd0dWXUCUhpRSlGgVTegDaBZHQI2BrWoWHk91fZQoaAZoCWgPQwjt9IO6SHEWQJSGlFKUaBVNCQFoFkdAjYMHFHavinV9lChoBmgJaA9DCCzzVl2Hbk9AlIaUUpRoFU3oA2gWR0CNhEAjps42dX2UKGgGaAloD0MIj2yumueARUCUhpRSlGgVTQcBaBZHQI2EoI4VARl1fZQoaAZoCWgPQwgFw7mGGbRTQJSGlFKUaBVN6ANoFkdAjYXzspoboHV9lChoBmgJaA9DCPwBDwwgo1hAlIaUUpRoFU3oA2gWR0CNh5iS7oStdX2UKGgGaAloD0MIuagWEcXEIMCUhpRSlGgVS9JoFkdAjYk4ixFAmnV9lChoBmgJaA9DCChGlswx2GJAlIaUUpRoFU3oA2gWR0CNi2p/gBLgdX2UKGgGaAloD0MIxlG5iVpMWkCUhpRSlGgVTegDaBZHQI2Lw0j1PFh1fZQoaAZoCWgPQwjUfQBSm0tVQJSGlFKUaBVN6ANoFkdAjY4bgKnei3V9lChoBmgJaA9DCBJPdjOj/GFAlIaUUpRoFU3oA2gWR0CNl20hvBJqdX2UKGgGaAloD0MIYFs//WdzWkCUhpRSlGgVTegDaBZHQI2ZGejEehh1fZQoaAZoCWgPQwhe2QWDa241wJSGlFKUaBVNEAFoFkdAjZ0kKu0TlHV9lChoBmgJaA9DCF+X4T/dVE7AlIaUUpRoFU0EAWgWR0CNnTMSK3uvdX2UKGgGaAloD0MIcm4T7pV5DsCUhpRSlGgVS85oFkdAjZ9pd8iOenV9lChoBmgJaA9DCHDSNCiaZxZAlIaUUpRoFUvgaBZHQI2g6ih37k51fZQoaAZoCWgPQwiR1ELJ5Kg3QJSGlFKUaBVL1GgWR0CNpEf16E8JdX2UKGgGaAloD0MIC0YldQIkSkCUhpRSlGgVS8hoFkdAjat9mYjSonV9lChoBmgJaA9DCOVjd4GS0inAlIaUUpRoFUvYaBZHQI2svpUxVQ11fZQoaAZoCWgPQwjYEByXcflYQJSGlFKUaBVN6ANoFkdAja0p8F6iTXV9lChoBmgJaA9DCPIolfCEzirAlIaUUpRoFUviaBZHQI2waoybhFV1fZQoaAZoCWgPQwjLEwg7xRpCQJSGlFKUaBVLzWgWR0CNsJPN3W4FdX2UKGgGaAloD0MIfzScMjcDZUCUhpRSlGgVTegDaBZHQI2xTpHI6sB1fZQoaAZoCWgPQwimf0kqU8BpQJSGlFKUaBVNGANoFkdAjbUlvQ4S6HV9lChoBmgJaA9DCDc10HzOoTlAlIaUUpRoFUvbaBZHQI290h9srNJ1fZQoaAZoCWgPQwgiUz4EVYMOQJSGlFKUaBVNTwFoFkdAjb4j2SMcZXV9lChoBmgJaA9DCBPvAE9aIDXAlIaUUpRoFUvmaBZHQI3IOk30f5l1fZQoaAZoCWgPQwh39SoyOjheQJSGlFKUaBVN6ANoFkdAjc+0t7KJVXV9lChoBmgJaA9DCHRGlPYGwV5AlIaUUpRoFU3oA2gWR0CN16SFoL5RdX2UKGgGaAloD0MIhugQOBLDWECUhpRSlGgVTegDaBZHQI3arUutfXx1fZQoaAZoCWgPQwjDLooe+BFVQJSGlFKUaBVN6ANoFkdAjdwGbkOqenV9lChoBmgJaA9DCAWk/Q8wDWJAlIaUUpRoFU3oA2gWR0CN3ZR3NcGDdX2UKGgGaAloD0MI+WUwRiQGW0CUhpRSlGgVTegDaBZHQI3fJWT5ftx1fZQoaAZoCWgPQwidhT3t8LtYQJSGlFKUaBVN6ANoFkdAjePzXz19OXV9lChoBmgJaA9DCMssQrEVPVVAlIaUUpRoFU3oA2gWR0CN759MK1G9dX2UKGgGaAloD0MIntFWJZHtR0CUhpRSlGgVS8ZoFkdAjfUOF6AvtnV9lChoBmgJaA9DCPZ8zXLZ7VtAlIaUUpRoFU3oA2gWR0COBnPrv9cbdX2UKGgGaAloD0MIlWJH41DzX0CUhpRSlGgVTegDaBZHQI4HyySmqHZ1fZQoaAZoCWgPQwiInL6er7FZQJSGlFKUaBVN6ANoFkdAjguzfR/mT3V9lChoBmgJaA9DCOMYyR6hmFxAlIaUUpRoFU3oA2gWR0COC9xmTTvzdX2UKGgGaAloD0MIqMXgYdrCXkCUhpRSlGgVTegDaBZHQI4Mg8nuy/t1fZQoaAZoCWgPQwhdiNUf4b9qQJSGlFKUaBVNOQJoFkdAjhHC1JDmbXV9lChoBmgJaA9DCGnk84onEWJAlIaUUpRoFU3oA2gWR0COGD+jM3ZPdX2UKGgGaAloD0MII6DCEaQXWECUhpRSlGgVTegDaBZHQI4Yh4fOlft1fZQoaAZoCWgPQwgYmYBfI4VoQJSGlFKUaBVN+gJoFkdAjh5QaBI4EXV9lChoBmgJaA9DCGtJRzmYo11AlIaUUpRoFU3oA2gWR0COIRKoybhFdX2UKGgGaAloD0MIbHnleltyYUCUhpRSlGgVTegDaBZHQI4muznied11fZQoaAZoCWgPQwjSNZNvtkE9QJSGlFKUaBVL4GgWR0COKVUQTVUddX2UKGgGaAloD0MI8L4qFyo9W0CUhpRSlGgVTegDaBZHQI4s++23KCB1fZQoaAZoCWgPQwh8C+vGu6NhQJSGlFKUaBVN6ANoFkdAji81+iJwbXV9lChoBmgJaA9DCGzsEtXbiG1AlIaUUpRoFU3sAWgWR0COMAhXbM5fdX2UKGgGaAloD0MI6LtbWaJzJUCUhpRSlGgVS/RoFkdAjjMYdZJTVHV9lChoBmgJaA9DCM7fhEIE3D9AlIaUUpRoFUvNaBZHQI44KhakhzN1fZQoaAZoCWgPQwhm2ZPAZpdiQJSGlFKUaBVN6ANoFkdAjjgstK7I1nV9lChoBmgJaA9DCFIMkGgCulxAlIaUUpRoFU3oA2gWR0COO9odMj/udX2UKGgGaAloD0MICyk/qfZUYECUhpRSlGgVTegDaBZHQI5Itr0rbxp1fZQoaAZoCWgPQwiELXb7rDLcv5SGlFKUaBVLymgWR0COU2HBUJfIdX2UKGgGaAloD0MIH75MFCFdP0CUhpRSlGgVTegDaBZHQI5aIVmBe5Z1fZQoaAZoCWgPQwgQIa6cPf1jQJSGlFKUaBVN6ANoFkdAjluFxXGOuXV9lChoBmgJaA9DCKxUUFH10V1AlIaUUpRoFU3oA2gWR0COX7wSamXPdX2UKGgGaAloD0MIkq6ZfDMNaUCUhpRSlGgVTegDaBZHQI5gqSDAaeh1fZQoaAZoCWgPQwjTn/1IETdjQJSGlFKUaBVN6ANoFkdAjmZveP7vX3V9lChoBmgJaA9DCJUQrKqXpyRAlIaUUpRoFUvWaBZHQI5shcu8K5V1fZQoaAZoCWgPQwiCqWbW0l1hQJSGlFKUaBVN6ANoFkdAjm1Ry4nWrnV9lChoBmgJaA9DCLA5B88EGGBAlIaUUpRoFU3oA2gWR0COc9bzK9wndX2UKGgGaAloD0MI+5P43AliYECUhpRSlGgVTegDaBZHQI59bTH80k51fZQoaAZoCWgPQwiJmujzURhAQJSGlFKUaBVL12gWR0COf2TINmUXdX2UKGgGaAloD0MIPKOtSiIrXkCUhpRSlGgVTegDaBZHQI6EkunMt9R1fZQoaAZoCWgPQwiHGK95VUFiQJSGlFKUaBVN6ANoFkdAjodrJCBwuXV9lChoBmgJaA9DCGowDcNHSmJAlIaUUpRoFU3oA2gWR0COiGGD+R5kdX2UKGgGaAloD0MINGlTdQ9WYkCUhpRSlGgVTegDaBZHQI6L0SIxgzB1fZQoaAZoCWgPQwiloxzMJrhMQJSGlFKUaBVLsWgWR0COjGwLVnVYdX2UKGgGaAloD0MIrwrUYvC8W0CUhpRSlGgVTegDaBZHQI6Q/geii7F1fZQoaAZoCWgPQwiOkIE8uyRXQJSGlFKUaBVN6ANoFkdAjpEBRZU1h3V9lChoBmgJaA9DCISaIVUULxFAlIaUUpRoFUvOaBZHQI6UK31BdD91ZS4="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 124,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWV/wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGcvVXNlcnMvYWd1c3RpbmR5ZS8ucHllbnYvdmVyc2lvbnMvMy4xMC4yL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxnL1VzZXJzL2FndXN0aW5keWUvLnB5ZW52L3ZlcnNpb25zLzMuMTAuMi9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGggfZR9lChoF2gOjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGIwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo-LinarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:541b95717f96c09928e46d51e46f2af4ec3cb60086f155a1c79675fd5db5edb2
|
3 |
+
size 87481
|
ppo-LinarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4fd222c145fb697acfb47209fc96eba959b6df52223c7b532b2b8ea1975a085d
|
3 |
+
size 43073
|
ppo-LinarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LinarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: macOS-12.3.1-arm64-arm-64bit Darwin Kernel Version 21.4.0: Fri Mar 18 00:46:32 PDT 2022; root:xnu-8020.101.4~15/RELEASE_ARM64_T6000
|
2 |
+
Python: 3.10.2
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.13.0.dev20220610
|
5 |
+
GPU Enabled: False
|
6 |
+
Numpy: 1.22.4
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:80a5c431eb1b813ceb6547788bdf2ddc0f220038e5c23438c5823c15b035c8b9
|
3 |
+
size 385937
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 215.02154610574263, "std_reward": 21.318980878273454, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-07-03T21:31:40.872268"}
|