ramonzaca commited on
Commit
04a2dbd
1 Parent(s): a46fd8a

Upload PPO LunarLander-v2 trained agent

Browse files
.gitattributes CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
28
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - metrics:
12
+ - type: mean_reward
13
+ value: 215.02 +/- 21.32
14
+ name: mean_reward
15
+ task:
16
+ type: reinforcement-learning
17
+ name: reinforcement-learning
18
+ dataset:
19
+ name: LunarLander-v2
20
+ type: LunarLander-v2
21
+ ---
22
+
23
+ # **PPO** Agent playing **LunarLander-v2**
24
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
25
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
26
+
27
+ ## Usage (with Stable-baselines3)
28
+ TODO: Add your code
29
+
30
+
31
+ ```python
32
+ from stable_baselines3 import ...
33
+ from huggingface_sb3 import load_from_hub
34
+
35
+ ...
36
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x162363760>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x1623637f0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x162363880>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x162363910>", "_build": "<function ActorCriticPolicy._build at 0x1623639a0>", "forward": "<function ActorCriticPolicy.forward at 0x162363a30>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x162363ac0>", "_predict": "<function ActorCriticPolicy._predict at 0x162363b50>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x162363be0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x162363c70>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x162363d00>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x162223340>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1656875601.4338639, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV/wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGcvVXNlcnMvYWd1c3RpbmR5ZS8ucHllbnYvdmVyc2lvbnMvMy4xMC4yL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxnL1VzZXJzL2FndXN0aW5keWUvLnB5ZW52L3ZlcnNpb25zLzMuMTAuMi9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGggfZR9lChoF2gOjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGIwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAACZfhL39gII/ImbQvRTb6L7jK2a+EtIDPQAAAAAAAAAA5m14vercFj4noge9UIcXvv4GgL31lSi+AAAAAAAAAAAzaRu+p7w/P0ALS73RtIe+8Hb8Ow3jLj4AAAAAAAAAAGYsYD3sGdy5E/CXPDLYG7vhAxM6jRkIvAAAAAAAAIA/APzVvnGjWj/c3Mi8Ou/evuyOHb4hBZA+AAAAAAAAAABm44S8XM9yuEB5PrxPgKU8lFqYOWDxWbsAAIA/AACAP+NYYr5S3sY8ltZWvu5jhr4Y/Ie+yOxfPwAAgD8AAAAAmlK7PB/7sLtDLDG+cdL/PNiHDb1OSdM9AACAPwAAgD9Alpq9nBVHvOZSwjwiBYg8gmirPU6WX70AAIA/AACAP1sqgL44wty7Xj1VvE3mGDsLvDc9xlGQOgAAgD8AAIA/ZoXxPAorDDpqFz68ku7/vCHpTbkrbwI9AAAAAAAAAABWOYy+Csw0PNKBMzvXaS65azLIvcbrWLoAAIA/AACAP3NHqj32vCu6DhpuuoKJl7bjA946rzOLOQAAgD8AAIA/TTCgvRSUqbqi5X85XI5oNDROcLre8pK4AACAPwAAgD/zXWY+gXPdvEqauzwe/TS7Ld5BvsK1/LsAAIA/AACAP+3nFz72n3c7sDE9vK1/ObpB3RA9LtoluwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVbhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI9u/6zFlJTkCUhpRSlIwBbJRN6AOMAXSUR0CM0Vx95QgtdX2UKGgGaAloD0MIlMDmHDzcW8CUhpRSlGgVTZsBaBZHQIzpiVB2Ohl1fZQoaAZoCWgPQwgO95Fbk8BjQJSGlFKUaBVNfgNoFkdAjO9HlOoHcHV9lChoBmgJaA9DCP2/6siRoEJAlIaUUpRoFU3oA2gWR0CM9jgflp49dX2UKGgGaAloD0MIJT53gv0cV0CUhpRSlGgVTegDaBZHQI0DuM+/xlR1fZQoaAZoCWgPQwjpZKn1fupaQJSGlFKUaBVN6ANoFkdAjQXDKxLTQXV9lChoBmgJaA9DCCOCcXDpOltAlIaUUpRoFU3oA2gWR0CNC0VrRBu5dX2UKGgGaAloD0MI9Bd6xOjwX0CUhpRSlGgVTegDaBZHQI0Qpkqc3ER1fZQoaAZoCWgPQwjjqrLviq5ZQJSGlFKUaBVN6ANoFkdAjRw863iJf3V9lChoBmgJaA9DCH+ismFNSGZAlIaUUpRoFU3oA2gWR0CNHujfvWpZdX2UKGgGaAloD0MI/TOD+MAnUECUhpRSlGgVTegDaBZHQI0gq+g13t91fZQoaAZoCWgPQwivB5Pi4xVfQJSGlFKUaBVN6ANoFkdAjSJdf9gndHV9lChoBmgJaA9DCNuF5jqNNFtAlIaUUpRoFU3oA2gWR0CNJoJIDoyLdX2UKGgGaAloD0MIZK93f7z6XUCUhpRSlGgVTegDaBZHQI0m484gieN1fZQoaAZoCWgPQwhi+IiYEuReQJSGlFKUaBVN6ANoFkdAjTEn+6y0KXV9lChoBmgJaA9DCNLCZRU2KFhAlIaUUpRoFU3oA2gWR0CNMxVvuPV/dX2UKGgGaAloD0MIpWWk3lPxIUCUhpRSlGgVTegDaBZHQI01OEf1Yhd1fZQoaAZoCWgPQwiCyY0i6yxgQJSGlFKUaBVN6ANoFkdAjVBNkWhysHV9lChoBmgJaA9DCHPYfcfwBFJAlIaUUpRoFU3oA2gWR0CNVa8g6ltTdX2UKGgGaAloD0MIH7sLlJQWYUCUhpRSlGgVTegDaBZHQI1cPO+qR2d1fZQoaAZoCWgPQwhLrmLxm0hhQJSGlFKUaBVN6ANoFkdAjWjlr2xptnV9lChoBmgJaA9DCDlE3JxKuVdAlIaUUpRoFU3oA2gWR0CNatLFGXoldX2UKGgGaAloD0MIH7sLlBS/X0CUhpRSlGgVTegDaBZHQI1wKGFi8Wd1fZQoaAZoCWgPQwiSBUzg1hlJQJSGlFKUaBVN6ANoFkdAjXWpQ+EAYHV9lChoBmgJaA9DCNiC3htD4APAlIaUUpRoFU0lAWgWR0CNeaW2PT5PdX2UKGgGaAloD0MIF9aNd0dWXUCUhpRSlGgVTegDaBZHQI2BrWoWHk91fZQoaAZoCWgPQwjt9IO6SHEWQJSGlFKUaBVNCQFoFkdAjYMHFHavinV9lChoBmgJaA9DCCzzVl2Hbk9AlIaUUpRoFU3oA2gWR0CNhEAjps42dX2UKGgGaAloD0MIj2yumueARUCUhpRSlGgVTQcBaBZHQI2EoI4VARl1fZQoaAZoCWgPQwgFw7mGGbRTQJSGlFKUaBVN6ANoFkdAjYXzspoboHV9lChoBmgJaA9DCPwBDwwgo1hAlIaUUpRoFU3oA2gWR0CNh5iS7oStdX2UKGgGaAloD0MIuagWEcXEIMCUhpRSlGgVS9JoFkdAjYk4ixFAmnV9lChoBmgJaA9DCChGlswx2GJAlIaUUpRoFU3oA2gWR0CNi2p/gBLgdX2UKGgGaAloD0MIxlG5iVpMWkCUhpRSlGgVTegDaBZHQI2Lw0j1PFh1fZQoaAZoCWgPQwjUfQBSm0tVQJSGlFKUaBVN6ANoFkdAjY4bgKnei3V9lChoBmgJaA9DCBJPdjOj/GFAlIaUUpRoFU3oA2gWR0CNl20hvBJqdX2UKGgGaAloD0MIYFs//WdzWkCUhpRSlGgVTegDaBZHQI2ZGejEehh1fZQoaAZoCWgPQwhe2QWDa241wJSGlFKUaBVNEAFoFkdAjZ0kKu0TlHV9lChoBmgJaA9DCF+X4T/dVE7AlIaUUpRoFU0EAWgWR0CNnTMSK3uvdX2UKGgGaAloD0MIcm4T7pV5DsCUhpRSlGgVS85oFkdAjZ9pd8iOenV9lChoBmgJaA9DCHDSNCiaZxZAlIaUUpRoFUvgaBZHQI2g6ih37k51fZQoaAZoCWgPQwiR1ELJ5Kg3QJSGlFKUaBVL1GgWR0CNpEf16E8JdX2UKGgGaAloD0MIC0YldQIkSkCUhpRSlGgVS8hoFkdAjat9mYjSonV9lChoBmgJaA9DCOVjd4GS0inAlIaUUpRoFUvYaBZHQI2svpUxVQ11fZQoaAZoCWgPQwjYEByXcflYQJSGlFKUaBVN6ANoFkdAja0p8F6iTXV9lChoBmgJaA9DCPIolfCEzirAlIaUUpRoFUviaBZHQI2waoybhFV1fZQoaAZoCWgPQwjLEwg7xRpCQJSGlFKUaBVLzWgWR0CNsJPN3W4FdX2UKGgGaAloD0MIfzScMjcDZUCUhpRSlGgVTegDaBZHQI2xTpHI6sB1fZQoaAZoCWgPQwimf0kqU8BpQJSGlFKUaBVNGANoFkdAjbUlvQ4S6HV9lChoBmgJaA9DCDc10HzOoTlAlIaUUpRoFUvbaBZHQI290h9srNJ1fZQoaAZoCWgPQwgiUz4EVYMOQJSGlFKUaBVNTwFoFkdAjb4j2SMcZXV9lChoBmgJaA9DCBPvAE9aIDXAlIaUUpRoFUvmaBZHQI3IOk30f5l1fZQoaAZoCWgPQwh39SoyOjheQJSGlFKUaBVN6ANoFkdAjc+0t7KJVXV9lChoBmgJaA9DCHRGlPYGwV5AlIaUUpRoFU3oA2gWR0CN16SFoL5RdX2UKGgGaAloD0MIhugQOBLDWECUhpRSlGgVTegDaBZHQI3arUutfXx1fZQoaAZoCWgPQwjDLooe+BFVQJSGlFKUaBVN6ANoFkdAjdwGbkOqenV9lChoBmgJaA9DCAWk/Q8wDWJAlIaUUpRoFU3oA2gWR0CN3ZR3NcGDdX2UKGgGaAloD0MI+WUwRiQGW0CUhpRSlGgVTegDaBZHQI3fJWT5ftx1fZQoaAZoCWgPQwidhT3t8LtYQJSGlFKUaBVN6ANoFkdAjePzXz19OXV9lChoBmgJaA9DCMssQrEVPVVAlIaUUpRoFU3oA2gWR0CN759MK1G9dX2UKGgGaAloD0MIntFWJZHtR0CUhpRSlGgVS8ZoFkdAjfUOF6AvtnV9lChoBmgJaA9DCPZ8zXLZ7VtAlIaUUpRoFU3oA2gWR0COBnPrv9cbdX2UKGgGaAloD0MIlWJH41DzX0CUhpRSlGgVTegDaBZHQI4HyySmqHZ1fZQoaAZoCWgPQwiInL6er7FZQJSGlFKUaBVN6ANoFkdAjguzfR/mT3V9lChoBmgJaA9DCOMYyR6hmFxAlIaUUpRoFU3oA2gWR0COC9xmTTvzdX2UKGgGaAloD0MIqMXgYdrCXkCUhpRSlGgVTegDaBZHQI4Mg8nuy/t1fZQoaAZoCWgPQwhdiNUf4b9qQJSGlFKUaBVNOQJoFkdAjhHC1JDmbXV9lChoBmgJaA9DCGnk84onEWJAlIaUUpRoFU3oA2gWR0COGD+jM3ZPdX2UKGgGaAloD0MII6DCEaQXWECUhpRSlGgVTegDaBZHQI4Yh4fOlft1fZQoaAZoCWgPQwgYmYBfI4VoQJSGlFKUaBVN+gJoFkdAjh5QaBI4EXV9lChoBmgJaA9DCGtJRzmYo11AlIaUUpRoFU3oA2gWR0COIRKoybhFdX2UKGgGaAloD0MIbHnleltyYUCUhpRSlGgVTegDaBZHQI4muznied11fZQoaAZoCWgPQwjSNZNvtkE9QJSGlFKUaBVL4GgWR0COKVUQTVUddX2UKGgGaAloD0MI8L4qFyo9W0CUhpRSlGgVTegDaBZHQI4s++23KCB1fZQoaAZoCWgPQwh8C+vGu6NhQJSGlFKUaBVN6ANoFkdAji81+iJwbXV9lChoBmgJaA9DCGzsEtXbiG1AlIaUUpRoFU3sAWgWR0COMAhXbM5fdX2UKGgGaAloD0MI6LtbWaJzJUCUhpRSlGgVS/RoFkdAjjMYdZJTVHV9lChoBmgJaA9DCM7fhEIE3D9AlIaUUpRoFUvNaBZHQI44KhakhzN1fZQoaAZoCWgPQwhm2ZPAZpdiQJSGlFKUaBVN6ANoFkdAjjgstK7I1nV9lChoBmgJaA9DCFIMkGgCulxAlIaUUpRoFU3oA2gWR0COO9odMj/udX2UKGgGaAloD0MICyk/qfZUYECUhpRSlGgVTegDaBZHQI5Itr0rbxp1fZQoaAZoCWgPQwiELXb7rDLcv5SGlFKUaBVLymgWR0COU2HBUJfIdX2UKGgGaAloD0MIH75MFCFdP0CUhpRSlGgVTegDaBZHQI5aIVmBe5Z1fZQoaAZoCWgPQwgQIa6cPf1jQJSGlFKUaBVN6ANoFkdAjluFxXGOuXV9lChoBmgJaA9DCKxUUFH10V1AlIaUUpRoFU3oA2gWR0COX7wSamXPdX2UKGgGaAloD0MIkq6ZfDMNaUCUhpRSlGgVTegDaBZHQI5gqSDAaeh1fZQoaAZoCWgPQwjTn/1IETdjQJSGlFKUaBVN6ANoFkdAjmZveP7vX3V9lChoBmgJaA9DCJUQrKqXpyRAlIaUUpRoFUvWaBZHQI5shcu8K5V1fZQoaAZoCWgPQwiCqWbW0l1hQJSGlFKUaBVN6ANoFkdAjm1Ry4nWrnV9lChoBmgJaA9DCLA5B88EGGBAlIaUUpRoFU3oA2gWR0COc9bzK9wndX2UKGgGaAloD0MI+5P43AliYECUhpRSlGgVTegDaBZHQI59bTH80k51fZQoaAZoCWgPQwiJmujzURhAQJSGlFKUaBVL12gWR0COf2TINmUXdX2UKGgGaAloD0MIPKOtSiIrXkCUhpRSlGgVTegDaBZHQI6EkunMt9R1fZQoaAZoCWgPQwiHGK95VUFiQJSGlFKUaBVN6ANoFkdAjodrJCBwuXV9lChoBmgJaA9DCGowDcNHSmJAlIaUUpRoFU3oA2gWR0COiGGD+R5kdX2UKGgGaAloD0MINGlTdQ9WYkCUhpRSlGgVTegDaBZHQI6L0SIxgzB1fZQoaAZoCWgPQwiloxzMJrhMQJSGlFKUaBVLsWgWR0COjGwLVnVYdX2UKGgGaAloD0MIrwrUYvC8W0CUhpRSlGgVTegDaBZHQI6Q/geii7F1fZQoaAZoCWgPQwiOkIE8uyRXQJSGlFKUaBVN6ANoFkdAjpEBRZU1h3V9lChoBmgJaA9DCISaIVUULxFAlIaUUpRoFUvOaBZHQI6UK31BdD91ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV/wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGcvVXNlcnMvYWd1c3RpbmR5ZS8ucHllbnYvdmVyc2lvbnMvMy4xMC4yL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxnL1VzZXJzL2FndXN0aW5keWUvLnB5ZW52L3ZlcnNpb25zLzMuMTAuMi9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGggfZR9lChoF2gOjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGIwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "macOS-12.3.1-arm64-arm-64bit Darwin Kernel Version 21.4.0: Fri Mar 18 00:46:32 PDT 2022; root:xnu-8020.101.4~15/RELEASE_ARM64_T6000", "Python": "3.10.2", "Stable-Baselines3": "1.5.0", "PyTorch": "1.13.0.dev20220610", "GPU Enabled": "False", "Numpy": "1.22.4", "Gym": "0.21.0"}}
ppo-LinarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6e95ff1a8c5e8469384e787613146742128e4806f104933e925ae139044fec53
3
+ size 146749
ppo-LinarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.5.0
ppo-LinarLander-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x162363760>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x1623637f0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x162363880>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x162363910>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x1623639a0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x162363a30>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x162363ac0>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x162363b50>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x162363be0>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x162363c70>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x162363d00>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc._abc_data object at 0x162223340>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 507904,
46
+ "_total_timesteps": 500000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1656875601.4338639,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWV/wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGcvVXNlcnMvYWd1c3RpbmR5ZS8ucHllbnYvdmVyc2lvbnMvMy4xMC4yL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxnL1VzZXJzL2FndXN0aW5keWUvLnB5ZW52L3ZlcnNpb25zLzMuMTAuMi9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGggfZR9lChoF2gOjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGIwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAACZfhL39gII/ImbQvRTb6L7jK2a+EtIDPQAAAAAAAAAA5m14vercFj4noge9UIcXvv4GgL31lSi+AAAAAAAAAAAzaRu+p7w/P0ALS73RtIe+8Hb8Ow3jLj4AAAAAAAAAAGYsYD3sGdy5E/CXPDLYG7vhAxM6jRkIvAAAAAAAAIA/APzVvnGjWj/c3Mi8Ou/evuyOHb4hBZA+AAAAAAAAAABm44S8XM9yuEB5PrxPgKU8lFqYOWDxWbsAAIA/AACAP+NYYr5S3sY8ltZWvu5jhr4Y/Ie+yOxfPwAAgD8AAAAAmlK7PB/7sLtDLDG+cdL/PNiHDb1OSdM9AACAPwAAgD9Alpq9nBVHvOZSwjwiBYg8gmirPU6WX70AAIA/AACAP1sqgL44wty7Xj1VvE3mGDsLvDc9xlGQOgAAgD8AAIA/ZoXxPAorDDpqFz68ku7/vCHpTbkrbwI9AAAAAAAAAABWOYy+Csw0PNKBMzvXaS65azLIvcbrWLoAAIA/AACAP3NHqj32vCu6DhpuuoKJl7bjA946rzOLOQAAgD8AAIA/TTCgvRSUqbqi5X85XI5oNDROcLre8pK4AACAPwAAgD/zXWY+gXPdvEqauzwe/TS7Ld5BvsK1/LsAAIA/AACAP+3nFz72n3c7sDE9vK1/ObpB3RA9LtoluwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.015808000000000044,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVbhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI9u/6zFlJTkCUhpRSlIwBbJRN6AOMAXSUR0CM0Vx95QgtdX2UKGgGaAloD0MIlMDmHDzcW8CUhpRSlGgVTZsBaBZHQIzpiVB2Ohl1fZQoaAZoCWgPQwgO95Fbk8BjQJSGlFKUaBVNfgNoFkdAjO9HlOoHcHV9lChoBmgJaA9DCP2/6siRoEJAlIaUUpRoFU3oA2gWR0CM9jgflp49dX2UKGgGaAloD0MIJT53gv0cV0CUhpRSlGgVTegDaBZHQI0DuM+/xlR1fZQoaAZoCWgPQwjpZKn1fupaQJSGlFKUaBVN6ANoFkdAjQXDKxLTQXV9lChoBmgJaA9DCCOCcXDpOltAlIaUUpRoFU3oA2gWR0CNC0VrRBu5dX2UKGgGaAloD0MI9Bd6xOjwX0CUhpRSlGgVTegDaBZHQI0Qpkqc3ER1fZQoaAZoCWgPQwjjqrLviq5ZQJSGlFKUaBVN6ANoFkdAjRw863iJf3V9lChoBmgJaA9DCH+ismFNSGZAlIaUUpRoFU3oA2gWR0CNHujfvWpZdX2UKGgGaAloD0MI/TOD+MAnUECUhpRSlGgVTegDaBZHQI0gq+g13t91fZQoaAZoCWgPQwivB5Pi4xVfQJSGlFKUaBVN6ANoFkdAjSJdf9gndHV9lChoBmgJaA9DCNuF5jqNNFtAlIaUUpRoFU3oA2gWR0CNJoJIDoyLdX2UKGgGaAloD0MIZK93f7z6XUCUhpRSlGgVTegDaBZHQI0m484gieN1fZQoaAZoCWgPQwhi+IiYEuReQJSGlFKUaBVN6ANoFkdAjTEn+6y0KXV9lChoBmgJaA9DCNLCZRU2KFhAlIaUUpRoFU3oA2gWR0CNMxVvuPV/dX2UKGgGaAloD0MIpWWk3lPxIUCUhpRSlGgVTegDaBZHQI01OEf1Yhd1fZQoaAZoCWgPQwiCyY0i6yxgQJSGlFKUaBVN6ANoFkdAjVBNkWhysHV9lChoBmgJaA9DCHPYfcfwBFJAlIaUUpRoFU3oA2gWR0CNVa8g6ltTdX2UKGgGaAloD0MIH7sLlJQWYUCUhpRSlGgVTegDaBZHQI1cPO+qR2d1fZQoaAZoCWgPQwhLrmLxm0hhQJSGlFKUaBVN6ANoFkdAjWjlr2xptnV9lChoBmgJaA9DCDlE3JxKuVdAlIaUUpRoFU3oA2gWR0CNatLFGXoldX2UKGgGaAloD0MIH7sLlBS/X0CUhpRSlGgVTegDaBZHQI1wKGFi8Wd1fZQoaAZoCWgPQwiSBUzg1hlJQJSGlFKUaBVN6ANoFkdAjXWpQ+EAYHV9lChoBmgJaA9DCNiC3htD4APAlIaUUpRoFU0lAWgWR0CNeaW2PT5PdX2UKGgGaAloD0MIF9aNd0dWXUCUhpRSlGgVTegDaBZHQI2BrWoWHk91fZQoaAZoCWgPQwjt9IO6SHEWQJSGlFKUaBVNCQFoFkdAjYMHFHavinV9lChoBmgJaA9DCCzzVl2Hbk9AlIaUUpRoFU3oA2gWR0CNhEAjps42dX2UKGgGaAloD0MIj2yumueARUCUhpRSlGgVTQcBaBZHQI2EoI4VARl1fZQoaAZoCWgPQwgFw7mGGbRTQJSGlFKUaBVN6ANoFkdAjYXzspoboHV9lChoBmgJaA9DCPwBDwwgo1hAlIaUUpRoFU3oA2gWR0CNh5iS7oStdX2UKGgGaAloD0MIuagWEcXEIMCUhpRSlGgVS9JoFkdAjYk4ixFAmnV9lChoBmgJaA9DCChGlswx2GJAlIaUUpRoFU3oA2gWR0CNi2p/gBLgdX2UKGgGaAloD0MIxlG5iVpMWkCUhpRSlGgVTegDaBZHQI2Lw0j1PFh1fZQoaAZoCWgPQwjUfQBSm0tVQJSGlFKUaBVN6ANoFkdAjY4bgKnei3V9lChoBmgJaA9DCBJPdjOj/GFAlIaUUpRoFU3oA2gWR0CNl20hvBJqdX2UKGgGaAloD0MIYFs//WdzWkCUhpRSlGgVTegDaBZHQI2ZGejEehh1fZQoaAZoCWgPQwhe2QWDa241wJSGlFKUaBVNEAFoFkdAjZ0kKu0TlHV9lChoBmgJaA9DCF+X4T/dVE7AlIaUUpRoFU0EAWgWR0CNnTMSK3uvdX2UKGgGaAloD0MIcm4T7pV5DsCUhpRSlGgVS85oFkdAjZ9pd8iOenV9lChoBmgJaA9DCHDSNCiaZxZAlIaUUpRoFUvgaBZHQI2g6ih37k51fZQoaAZoCWgPQwiR1ELJ5Kg3QJSGlFKUaBVL1GgWR0CNpEf16E8JdX2UKGgGaAloD0MIC0YldQIkSkCUhpRSlGgVS8hoFkdAjat9mYjSonV9lChoBmgJaA9DCOVjd4GS0inAlIaUUpRoFUvYaBZHQI2svpUxVQ11fZQoaAZoCWgPQwjYEByXcflYQJSGlFKUaBVN6ANoFkdAja0p8F6iTXV9lChoBmgJaA9DCPIolfCEzirAlIaUUpRoFUviaBZHQI2waoybhFV1fZQoaAZoCWgPQwjLEwg7xRpCQJSGlFKUaBVLzWgWR0CNsJPN3W4FdX2UKGgGaAloD0MIfzScMjcDZUCUhpRSlGgVTegDaBZHQI2xTpHI6sB1fZQoaAZoCWgPQwimf0kqU8BpQJSGlFKUaBVNGANoFkdAjbUlvQ4S6HV9lChoBmgJaA9DCDc10HzOoTlAlIaUUpRoFUvbaBZHQI290h9srNJ1fZQoaAZoCWgPQwgiUz4EVYMOQJSGlFKUaBVNTwFoFkdAjb4j2SMcZXV9lChoBmgJaA9DCBPvAE9aIDXAlIaUUpRoFUvmaBZHQI3IOk30f5l1fZQoaAZoCWgPQwh39SoyOjheQJSGlFKUaBVN6ANoFkdAjc+0t7KJVXV9lChoBmgJaA9DCHRGlPYGwV5AlIaUUpRoFU3oA2gWR0CN16SFoL5RdX2UKGgGaAloD0MIhugQOBLDWECUhpRSlGgVTegDaBZHQI3arUutfXx1fZQoaAZoCWgPQwjDLooe+BFVQJSGlFKUaBVN6ANoFkdAjdwGbkOqenV9lChoBmgJaA9DCAWk/Q8wDWJAlIaUUpRoFU3oA2gWR0CN3ZR3NcGDdX2UKGgGaAloD0MI+WUwRiQGW0CUhpRSlGgVTegDaBZHQI3fJWT5ftx1fZQoaAZoCWgPQwidhT3t8LtYQJSGlFKUaBVN6ANoFkdAjePzXz19OXV9lChoBmgJaA9DCMssQrEVPVVAlIaUUpRoFU3oA2gWR0CN759MK1G9dX2UKGgGaAloD0MIntFWJZHtR0CUhpRSlGgVS8ZoFkdAjfUOF6AvtnV9lChoBmgJaA9DCPZ8zXLZ7VtAlIaUUpRoFU3oA2gWR0COBnPrv9cbdX2UKGgGaAloD0MIlWJH41DzX0CUhpRSlGgVTegDaBZHQI4HyySmqHZ1fZQoaAZoCWgPQwiInL6er7FZQJSGlFKUaBVN6ANoFkdAjguzfR/mT3V9lChoBmgJaA9DCOMYyR6hmFxAlIaUUpRoFU3oA2gWR0COC9xmTTvzdX2UKGgGaAloD0MIqMXgYdrCXkCUhpRSlGgVTegDaBZHQI4Mg8nuy/t1fZQoaAZoCWgPQwhdiNUf4b9qQJSGlFKUaBVNOQJoFkdAjhHC1JDmbXV9lChoBmgJaA9DCGnk84onEWJAlIaUUpRoFU3oA2gWR0COGD+jM3ZPdX2UKGgGaAloD0MII6DCEaQXWECUhpRSlGgVTegDaBZHQI4Yh4fOlft1fZQoaAZoCWgPQwgYmYBfI4VoQJSGlFKUaBVN+gJoFkdAjh5QaBI4EXV9lChoBmgJaA9DCGtJRzmYo11AlIaUUpRoFU3oA2gWR0COIRKoybhFdX2UKGgGaAloD0MIbHnleltyYUCUhpRSlGgVTegDaBZHQI4muznied11fZQoaAZoCWgPQwjSNZNvtkE9QJSGlFKUaBVL4GgWR0COKVUQTVUddX2UKGgGaAloD0MI8L4qFyo9W0CUhpRSlGgVTegDaBZHQI4s++23KCB1fZQoaAZoCWgPQwh8C+vGu6NhQJSGlFKUaBVN6ANoFkdAji81+iJwbXV9lChoBmgJaA9DCGzsEtXbiG1AlIaUUpRoFU3sAWgWR0COMAhXbM5fdX2UKGgGaAloD0MI6LtbWaJzJUCUhpRSlGgVS/RoFkdAjjMYdZJTVHV9lChoBmgJaA9DCM7fhEIE3D9AlIaUUpRoFUvNaBZHQI44KhakhzN1fZQoaAZoCWgPQwhm2ZPAZpdiQJSGlFKUaBVN6ANoFkdAjjgstK7I1nV9lChoBmgJaA9DCFIMkGgCulxAlIaUUpRoFU3oA2gWR0COO9odMj/udX2UKGgGaAloD0MICyk/qfZUYECUhpRSlGgVTegDaBZHQI5Itr0rbxp1fZQoaAZoCWgPQwiELXb7rDLcv5SGlFKUaBVLymgWR0COU2HBUJfIdX2UKGgGaAloD0MIH75MFCFdP0CUhpRSlGgVTegDaBZHQI5aIVmBe5Z1fZQoaAZoCWgPQwgQIa6cPf1jQJSGlFKUaBVN6ANoFkdAjluFxXGOuXV9lChoBmgJaA9DCKxUUFH10V1AlIaUUpRoFU3oA2gWR0COX7wSamXPdX2UKGgGaAloD0MIkq6ZfDMNaUCUhpRSlGgVTegDaBZHQI5gqSDAaeh1fZQoaAZoCWgPQwjTn/1IETdjQJSGlFKUaBVN6ANoFkdAjmZveP7vX3V9lChoBmgJaA9DCJUQrKqXpyRAlIaUUpRoFUvWaBZHQI5shcu8K5V1fZQoaAZoCWgPQwiCqWbW0l1hQJSGlFKUaBVN6ANoFkdAjm1Ry4nWrnV9lChoBmgJaA9DCLA5B88EGGBAlIaUUpRoFU3oA2gWR0COc9bzK9wndX2UKGgGaAloD0MI+5P43AliYECUhpRSlGgVTegDaBZHQI59bTH80k51fZQoaAZoCWgPQwiJmujzURhAQJSGlFKUaBVL12gWR0COf2TINmUXdX2UKGgGaAloD0MIPKOtSiIrXkCUhpRSlGgVTegDaBZHQI6EkunMt9R1fZQoaAZoCWgPQwiHGK95VUFiQJSGlFKUaBVN6ANoFkdAjodrJCBwuXV9lChoBmgJaA9DCGowDcNHSmJAlIaUUpRoFU3oA2gWR0COiGGD+R5kdX2UKGgGaAloD0MINGlTdQ9WYkCUhpRSlGgVTegDaBZHQI6L0SIxgzB1fZQoaAZoCWgPQwiloxzMJrhMQJSGlFKUaBVLsWgWR0COjGwLVnVYdX2UKGgGaAloD0MIrwrUYvC8W0CUhpRSlGgVTegDaBZHQI6Q/geii7F1fZQoaAZoCWgPQwiOkIE8uyRXQJSGlFKUaBVN6ANoFkdAjpEBRZU1h3V9lChoBmgJaA9DCISaIVUULxFAlIaUUpRoFUvOaBZHQI6UK31BdD91ZS4="
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 124,
79
+ "n_steps": 1024,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 4,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWV/wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGcvVXNlcnMvYWd1c3RpbmR5ZS8ucHllbnYvdmVyc2lvbnMvMy4xMC4yL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxnL1VzZXJzL2FndXN0aW5keWUvLnB5ZW52L3ZlcnNpb25zLzMuMTAuMi9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGggfZR9lChoF2gOjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGIwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
ppo-LinarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:541b95717f96c09928e46d51e46f2af4ec3cb60086f155a1c79675fd5db5edb2
3
+ size 87481
ppo-LinarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4fd222c145fb697acfb47209fc96eba959b6df52223c7b532b2b8ea1975a085d
3
+ size 43073
ppo-LinarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LinarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: macOS-12.3.1-arm64-arm-64bit Darwin Kernel Version 21.4.0: Fri Mar 18 00:46:32 PDT 2022; root:xnu-8020.101.4~15/RELEASE_ARM64_T6000
2
+ Python: 3.10.2
3
+ Stable-Baselines3: 1.5.0
4
+ PyTorch: 1.13.0.dev20220610
5
+ GPU Enabled: False
6
+ Numpy: 1.22.4
7
+ Gym: 0.21.0
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:80a5c431eb1b813ceb6547788bdf2ddc0f220038e5c23438c5823c15b035c8b9
3
+ size 385937
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 215.02154610574263, "std_reward": 21.318980878273454, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-07-03T21:31:40.872268"}