RapMinerz
commited on
Commit
•
6f7ecb6
1
Parent(s):
4e074ab
update readme
Browse files
README.md
CHANGED
@@ -22,9 +22,9 @@ Size of this model is __large__
|
|
22 |
|
23 |
| Parameter | Value |
|
24 |
|----------------|--------------|
|
25 |
-
| Dimensionality |
|
26 |
-
| Window Size |
|
27 |
-
| Epochs |
|
28 |
| Algorithm | CBOW |
|
29 |
|
30 |
## Versions
|
@@ -76,28 +76,28 @@ Once the model is loaded, you can use it as shown:
|
|
76 |
|
77 |
```python
|
78 |
model.wv.most_similar("bendo")
|
79 |
-
[('binks', 0.
|
80 |
-
('bando', 0.
|
81 |
-
('
|
82 |
-
('
|
83 |
-
('
|
84 |
-
('
|
85 |
-
('
|
86 |
-
('block', 0.
|
87 |
-
('
|
88 |
-
('bloc', 0.
|
89 |
|
90 |
model.wv.most_similar("kichta")
|
91 |
-
[('liasse', 0.
|
92 |
-
('sse-lia', 0.
|
93 |
-
('kishta', 0.
|
94 |
-
('kich', 0.
|
95 |
-
('
|
96 |
-
('
|
97 |
-
('
|
98 |
-
('
|
99 |
-
('
|
100 |
-
('
|
101 |
```
|
102 |
|
103 |
2. **To find the word that doesn't match in a list of words**
|
@@ -114,10 +114,10 @@ model.wv.doesnt_match(["Zidane","Mbappé","Ronaldo","Messi","Jordan"])
|
|
114 |
|
115 |
```python
|
116 |
model.wv.similarity("kichta", "moula")
|
117 |
-
0.
|
118 |
|
119 |
model.wv.similarity("bonheur", "moula")
|
120 |
-
0.
|
121 |
```
|
122 |
|
123 |
4. **Or even get the vector representation of a word**
|
|
|
22 |
|
23 |
| Parameter | Value |
|
24 |
|----------------|--------------|
|
25 |
+
| Dimensionality | 300 |
|
26 |
+
| Window Size | 10 |
|
27 |
+
| Epochs | 20 |
|
28 |
| Algorithm | CBOW |
|
29 |
|
30 |
## Versions
|
|
|
76 |
|
77 |
```python
|
78 |
model.wv.most_similar("bendo")
|
79 |
+
[('binks', 0.7082766890525818),
|
80 |
+
('bando', 0.684855043888092),
|
81 |
+
('tieks', 0.664956271648407),
|
82 |
+
('hall', 0.6226587295532227),
|
83 |
+
('ghetto', 0.6097022294998169),
|
84 |
+
('barrio', 0.5864858627319336),
|
85 |
+
('hood', 0.5714126229286194),
|
86 |
+
('block', 0.5666197538375854),
|
87 |
+
('quartier', 0.557117760181427),
|
88 |
+
('bloc', 0.5540688037872314)]
|
89 |
|
90 |
model.wv.most_similar("kichta")
|
91 |
+
[('liasse', 0.7318882942199707),
|
92 |
+
('sse-lia', 0.7186722755432129),
|
93 |
+
('kishta', 0.6604368686676025),
|
94 |
+
('kich', 0.6188479661941528),
|
95 |
+
('moula', 0.570914626121521),
|
96 |
+
('sacoche', 0.553415834903717),
|
97 |
+
('skalape', 0.5243070125579834),
|
98 |
+
('Kichta', 0.49806657433509827),
|
99 |
+
('ppe-fra', 0.49229520559310913),
|
100 |
+
('valise', 0.49089524149894714)]
|
101 |
```
|
102 |
|
103 |
2. **To find the word that doesn't match in a list of words**
|
|
|
114 |
|
115 |
```python
|
116 |
model.wv.similarity("kichta", "moula")
|
117 |
+
0.57091457
|
118 |
|
119 |
model.wv.similarity("bonheur", "moula")
|
120 |
+
0.09769239
|
121 |
```
|
122 |
|
123 |
4. **Or even get the vector representation of a word**
|