RapMinerz commited on
Commit
6f7ecb6
1 Parent(s): 4e074ab

update readme

Browse files
Files changed (1) hide show
  1. README.md +25 -25
README.md CHANGED
@@ -22,9 +22,9 @@ Size of this model is __large__
22
 
23
  | Parameter | Value |
24
  |----------------|--------------|
25
- | Dimensionality | 100 |
26
- | Window Size | 5 |
27
- | Epochs | 10 |
28
  | Algorithm | CBOW |
29
 
30
  ## Versions
@@ -76,28 +76,28 @@ Once the model is loaded, you can use it as shown:
76
 
77
  ```python
78
  model.wv.most_similar("bendo")
79
- [('binks', 0.8920747637748718),
80
- ('bando', 0.8460732698440552),
81
- ('hood', 0.8299438953399658),
82
- ('tieks', 0.8264378309249878),
83
- ('hall', 0.817583441734314),
84
- ('secteur', 0.8145656585693359),
85
- ('barrio', 0.809047281742096),
86
- ('block', 0.793493390083313),
87
- ('bâtiment', 0.7826434969902039),
88
- ('bloc', 0.7753982543945312)]
89
 
90
  model.wv.most_similar("kichta")
91
- [('liasse', 0.878665566444397),
92
- ('sse-lia', 0.8552991151809692),
93
- ('kishta', 0.8535938262939453),
94
- ('kich', 0.7646669149398804),
95
- ('skalape', 0.7576569318771362),
96
- ('moula', 0.7466527223587036),
97
- ('valise', 0.7429592609405518),
98
- ('sacoche', 0.7324921488761902),
99
- ('mallette', 0.7247079014778137),
100
- ('re-pai', 0.7060815095901489)]
101
  ```
102
 
103
  2. **To find the word that doesn't match in a list of words**
@@ -114,10 +114,10 @@ model.wv.doesnt_match(["Zidane","Mbappé","Ronaldo","Messi","Jordan"])
114
 
115
  ```python
116
  model.wv.similarity("kichta", "moula")
117
- 0.7466528
118
 
119
  model.wv.similarity("bonheur", "moula")
120
- 0.16985293
121
  ```
122
 
123
  4. **Or even get the vector representation of a word**
 
22
 
23
  | Parameter | Value |
24
  |----------------|--------------|
25
+ | Dimensionality | 300 |
26
+ | Window Size | 10 |
27
+ | Epochs | 20 |
28
  | Algorithm | CBOW |
29
 
30
  ## Versions
 
76
 
77
  ```python
78
  model.wv.most_similar("bendo")
79
+ [('binks', 0.7082766890525818),
80
+ ('bando', 0.684855043888092),
81
+ ('tieks', 0.664956271648407),
82
+ ('hall', 0.6226587295532227),
83
+ ('ghetto', 0.6097022294998169),
84
+ ('barrio', 0.5864858627319336),
85
+ ('hood', 0.5714126229286194),
86
+ ('block', 0.5666197538375854),
87
+ ('quartier', 0.557117760181427),
88
+ ('bloc', 0.5540688037872314)]
89
 
90
  model.wv.most_similar("kichta")
91
+ [('liasse', 0.7318882942199707),
92
+ ('sse-lia', 0.7186722755432129),
93
+ ('kishta', 0.6604368686676025),
94
+ ('kich', 0.6188479661941528),
95
+ ('moula', 0.570914626121521),
96
+ ('sacoche', 0.553415834903717),
97
+ ('skalape', 0.5243070125579834),
98
+ ('Kichta', 0.49806657433509827),
99
+ ('ppe-fra', 0.49229520559310913),
100
+ ('valise', 0.49089524149894714)]
101
  ```
102
 
103
  2. **To find the word that doesn't match in a list of words**
 
114
 
115
  ```python
116
  model.wv.similarity("kichta", "moula")
117
+ 0.57091457
118
 
119
  model.wv.similarity("bonheur", "moula")
120
+ 0.09769239
121
  ```
122
 
123
  4. **Or even get the vector representation of a word**