raptorkwok commited on
Commit
65dc3d3
·
1 Parent(s): b8d8167

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +83 -0
README.md ADDED
@@ -0,0 +1,83 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - generated_from_trainer
4
+ metrics:
5
+ - bleu
6
+ model-index:
7
+ - name: cantonese-chinese-parallel-corpus-bart-compare-alpha
8
+ results: []
9
+ ---
10
+
11
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
12
+ should probably proofread and complete it, then remove this comment. -->
13
+
14
+ # cantonese-chinese-parallel-corpus-bart-compare-alpha
15
+
16
+ This model is a fine-tuned version of [fnlp/bart-base-chinese](https://huggingface.co/fnlp/bart-base-chinese) on an unknown dataset.
17
+ It achieves the following results on the evaluation set:
18
+ - Loss: 1.2307
19
+ - Bleu: 28.1911
20
+ - Chrf: 27.3934
21
+ - Gen Len: 13.1593
22
+
23
+ ## Model description
24
+
25
+ More information needed
26
+
27
+ ## Intended uses & limitations
28
+
29
+ More information needed
30
+
31
+ ## Training and evaluation data
32
+
33
+ More information needed
34
+
35
+ ## Training procedure
36
+
37
+ ### Training hyperparameters
38
+
39
+ The following hyperparameters were used during training:
40
+ - learning_rate: 2e-05
41
+ - train_batch_size: 16
42
+ - eval_batch_size: 16
43
+ - seed: 42
44
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
45
+ - lr_scheduler_type: linear
46
+ - num_epochs: 30
47
+ - mixed_precision_training: Native AMP
48
+
49
+ ### Training results
50
+
51
+ | Training Loss | Epoch | Step | Validation Loss | Bleu | Chrf | Gen Len |
52
+ |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|
53
+ | 1.8245 | 0.14 | 1000 | 1.5392 | 23.4094 | 22.9586 | 12.9471 |
54
+ | 1.6283 | 0.29 | 2000 | 1.4433 | 24.6312 | 24.1038 | 12.9882 |
55
+ | 1.5527 | 0.43 | 3000 | 1.4074 | 25.4368 | 24.7944 | 13.0385 |
56
+ | 1.5125 | 0.58 | 4000 | 1.3743 | 25.6532 | 25.1073 | 13.0069 |
57
+ | 1.4572 | 0.72 | 5000 | 1.3468 | 26.2054 | 25.6527 | 13.0221 |
58
+ | 1.451 | 0.87 | 6000 | 1.3249 | 26.3433 | 25.7717 | 13.0345 |
59
+ | 1.4087 | 1.01 | 7000 | 1.3162 | 26.7569 | 26.0931 | 13.1037 |
60
+ | 1.296 | 1.16 | 8000 | 1.2961 | 26.7816 | 26.1834 | 13.0488 |
61
+ | 1.285 | 1.3 | 9000 | 1.2881 | 27.1895 | 26.4474 | 13.1257 |
62
+ | 1.281 | 1.45 | 10000 | 1.2778 | 27.248 | 26.5723 | 13.072 |
63
+ | 1.2809 | 1.59 | 11000 | 1.2772 | 27.3645 | 26.7016 | 13.0937 |
64
+ | 1.2741 | 1.74 | 12000 | 1.2568 | 27.3857 | 26.7455 | 13.0646 |
65
+ | 1.2658 | 1.88 | 13000 | 1.2552 | 27.4927 | 26.8279 | 13.0988 |
66
+ | 1.2412 | 2.03 | 14000 | 1.2632 | 27.5154 | 26.9238 | 13.0482 |
67
+ | 1.1303 | 2.17 | 15000 | 1.2627 | 27.7288 | 27.0753 | 13.0828 |
68
+ | 1.1449 | 2.32 | 16000 | 1.2596 | 27.7628 | 27.1038 | 13.0667 |
69
+ | 1.1352 | 2.46 | 17000 | 1.2465 | 27.9487 | 27.1672 | 13.1585 |
70
+ | 1.151 | 2.61 | 18000 | 1.2426 | 27.9699 | 27.2496 | 13.1294 |
71
+ | 1.1361 | 2.75 | 19000 | 1.2348 | 27.9343 | 27.218 | 13.0994 |
72
+ | 1.1368 | 2.9 | 20000 | 1.2307 | 28.1911 | 27.3934 | 13.1593 |
73
+ | 1.1012 | 3.04 | 21000 | 1.2487 | 28.1384 | 27.4055 | 13.1253 |
74
+ | 1.0201 | 3.19 | 22000 | 1.2482 | 28.0577 | 27.3169 | 13.1299 |
75
+ | 1.0274 | 3.33 | 23000 | 1.2479 | 28.149 | 27.4087 | 13.1401 |
76
+
77
+
78
+ ### Framework versions
79
+
80
+ - Transformers 4.28.1
81
+ - Pytorch 2.0.1+cu117
82
+ - Datasets 2.13.1
83
+ - Tokenizers 0.13.3