# Copyright (c) Sebastian Raschka under Apache License 2.0 (see LICENSE.txt). # Source for "Build a Large Language Model From Scratch" # https://github.com/rasbt/LLMs-from-scratch/blob/main/ch05/07_gpt_to_llama/standalone-llama32.ipynb import torch import torch.nn as nn LLAMA32_CONFIG_1B = { "vocab_size": 128_256, # Vocabulary size "context_length": 8192, # Maximum context length to use (reduced to save memory) "orig_context_length": 131_072, # Context length that was used to train the model "emb_dim": 2048, # Embedding dimension "n_heads": 32, # Number of attention heads "n_layers": 16, # Number of layers "hidden_dim": 8192, # Size of the intermediate dimension in FeedForward "n_kv_groups": 8, # Key-Value groups for grouped-query attention "rope_base": 500_000.0, # The base in RoPE's "theta" "dtype": torch.bfloat16, # Lower-precision dtype to reduce memory usage "rope_freq": { # RoPE frequency scaling "factor": 32.0, "low_freq_factor": 1.0, "high_freq_factor": 4.0, "original_context_length": 8192, } } LLAMA32_CONFIG_3B = { "vocab_size": 128_256, # Vocabulary size "context_length": 8192, # Maximum context length to use (reduced to save memory) "orig_context_length": 131_072, # Context length that was used to train the model "emb_dim": 3072, # Embedding dimension "n_heads": 24, # Number of attention heads "n_layers": 28, # Number of layers "hidden_dim": 8192, # Size of the intermediate dimension in FeedForward "n_kv_groups": 8, # Key-Value groups for grouped-query attention "rope_base": 500_000.0, # The base in RoPE's "theta" "dtype": torch.bfloat16, # Lower-precision dtype to reduce memory usage "rope_freq": { # RoPE frequency scaling "factor": 32.0, "low_freq_factor": 1.0, "high_freq_factor": 4.0, "original_context_length": 8192, } } class Llama3Model(nn.Module): def __init__(self, cfg): super().__init__() # Main model parameters self.tok_emb = nn.Embedding(cfg["vocab_size"], cfg["emb_dim"], dtype=cfg["dtype"]) self.trf_blocks = nn.ModuleList( # ModuleList since Sequential can only accept one input, and we need `x, mask, cos, sin` [TransformerBlock(cfg) for _ in range(cfg["n_layers"])] ) self.final_norm = nn.RMSNorm(cfg["emb_dim"], eps=1e-5, dtype=cfg["dtype"]) self.out_head = nn.Linear(cfg["emb_dim"], cfg["vocab_size"], bias=False, dtype=cfg["dtype"]) # Reusuable utilities self.register_buffer( "mask", torch.triu(torch.ones(cfg["context_length"], cfg["context_length"]), diagonal=1).bool(), persistent=False ) if cfg["orig_context_length"] != cfg["context_length"]: cfg["rope_base"] = rescale_theta( cfg["rope_base"], cfg["orig_context_length"], cfg["context_length"] ) cos, sin = compute_rope_params( head_dim=cfg["emb_dim"] // cfg["n_heads"], theta_base=cfg["rope_base"], context_length=cfg["context_length"], freq_config=cfg["rope_freq"] ) self.register_buffer("cos", cos, persistent=False) self.register_buffer("sin", sin, persistent=False) self.cfg = cfg def forward(self, in_idx): # Forward pass tok_embeds = self.tok_emb(in_idx) x = tok_embeds for block in self.trf_blocks: x = block(x, self.mask, self.cos, self.sin) x = self.final_norm(x) logits = self.out_head(x.to(self.cfg["dtype"])) return logits class TransformerBlock(nn.Module): def __init__(self, cfg): super().__init__() self.att = GroupedQueryAttention( d_in=cfg["emb_dim"], d_out=cfg["emb_dim"], num_heads=cfg["n_heads"], num_kv_groups=cfg["n_kv_groups"], dtype=cfg["dtype"] ) self.ff = FeedForward(cfg) self.norm1 = nn.RMSNorm(cfg["emb_dim"], eps=1e-5, dtype=cfg["dtype"]) self.norm2 = nn.RMSNorm(cfg["emb_dim"], eps=1e-5, dtype=cfg["dtype"]) def forward(self, x, mask, cos, sin): # Shortcut connection for attention block shortcut = x x = self.norm1(x) x = self.att(x, mask, cos, sin) # Shape [batch_size, num_tokens, emb_size] x = x + shortcut # Add the original input back # Shortcut connection for feed-forward block shortcut = x x = self.norm2(x) x = self.ff(x) x = x + shortcut # Add the original input back return x class FeedForward(nn.Module): def __init__(self, cfg): super().__init__() self.fc1 = nn.Linear(cfg["emb_dim"], cfg["hidden_dim"], dtype=cfg["dtype"], bias=False) self.fc2 = nn.Linear(cfg["emb_dim"], cfg["hidden_dim"], dtype=cfg["dtype"], bias=False) self.fc3 = nn.Linear(cfg["hidden_dim"], cfg["emb_dim"], dtype=cfg["dtype"], bias=False) def forward(self, x): x_fc1 = self.fc1(x) x_fc2 = self.fc2(x) x = nn.functional.silu(x_fc1) * x_fc2 return self.fc3(x) class GroupedQueryAttention(nn.Module): def __init__( self, d_in, d_out, num_heads, num_kv_groups, dtype=None ): super().__init__() assert d_out % num_heads == 0, "d_out must be divisible by num_heads" assert num_heads % num_kv_groups == 0, "num_heads must be divisible by num_kv_groups" self.d_out = d_out self.num_heads = num_heads self.head_dim = d_out // num_heads self.W_key = nn.Linear(d_in, num_kv_groups * self.head_dim, bias=False, dtype=dtype) self.W_value = nn.Linear(d_in, num_kv_groups * self.head_dim, bias=False, dtype=dtype) self.num_kv_groups = num_kv_groups self.group_size = num_heads // num_kv_groups self.W_query = nn.Linear(d_in, d_out, bias=False, dtype=dtype) self.out_proj = nn.Linear(d_out, d_out, bias=False, dtype=dtype) def forward(self, x, mask, cos, sin): b, num_tokens, d_in = x.shape queries = self.W_query(x) # Shape: (b, num_tokens, d_out) keys = self.W_key(x) # Shape: (b, num_tokens, num_kv_groups * head_dim) values = self.W_value(x) # Shape: (b, num_tokens, num_kv_groups * head_dim) # Reshape queries, keys, and values queries = queries.view(b, num_tokens, self.num_heads, self.head_dim) keys = keys.view(b, num_tokens, self.num_kv_groups, self.head_dim) values = values.view(b, num_tokens, self.num_kv_groups, self.head_dim) # Transpose keys, values, and queries keys = keys.transpose(1, 2) # Shape: (b, num_heads, num_tokens, head_dim) values = values.transpose(1, 2) # Shape: (b, num_heads, num_tokens, head_dim) queries = queries.transpose(1, 2) # Shape: (b, num_query_groups, num_tokens, head_dim) # Apply RoPE keys = apply_rope(keys, cos, sin) queries = apply_rope(queries, cos, sin) # Expand keys and values to match the number of heads # Shape: (b, num_heads, num_tokens, head_dim) keys = keys.repeat_interleave(self.group_size, dim=1) # Shape: (b, num_heads, num_tokens, head_dim) values = values.repeat_interleave(self.group_size, dim=1) # Shape: (b, num_heads, num_tokens, head_dim) # For example, before repeat_interleave along dim=1 (query groups): # [K1, K2] # After repeat_interleave (each query group is repeated group_size times): # [K1, K1, K2, K2] # If we used regular repeat instead of repeat_interleave, we'd get: # [K1, K2, K1, K2] # Compute scaled dot-product attention (aka self-attention) with a causal mask # Shape: (b, num_heads, num_tokens, num_tokens) attn_scores = queries @ keys.transpose(2, 3) # Dot product for each head # Use the mask to fill attention scores attn_scores = attn_scores.masked_fill(mask[:num_tokens, :num_tokens], -torch.inf) attn_weights = torch.softmax(attn_scores / keys.shape[-1]**0.5, dim=-1) assert keys.shape[-1] == self.head_dim # Shape: (b, num_tokens, num_heads, head_dim) context_vec = (attn_weights @ values).transpose(1, 2) # Combine heads, where self.d_out = self.num_heads * self.head_dim context_vec = context_vec.reshape(b, num_tokens, self.d_out) context_vec = self.out_proj(context_vec) # optional projection return context_vec def compute_rope_params(head_dim, theta_base=10_000, context_length=4096, freq_config=None, dtype=torch.float32): assert head_dim % 2 == 0, "Embedding dimension must be even" # Compute the inverse frequencies inv_freq = 1.0 / (theta_base ** (torch.arange(0, head_dim, 2, dtype=dtype)[: (head_dim // 2)].float() / head_dim)) # Frequency adjustments if freq_config is not None: low_freq_wavelen = freq_config["original_context_length"] / freq_config["low_freq_factor"] high_freq_wavelen = freq_config["original_context_length"] / freq_config["high_freq_factor"] wavelen = 2 * torch.pi / inv_freq inv_freq_llama = torch.where( wavelen > low_freq_wavelen, inv_freq / freq_config["factor"], inv_freq ) smooth_factor = (freq_config["original_context_length"] / wavelen - freq_config["low_freq_factor"]) / ( freq_config["high_freq_factor"] - freq_config["low_freq_factor"] ) smoothed_inv_freq = ( (1 - smooth_factor) * (inv_freq / freq_config["factor"]) + smooth_factor * inv_freq ) is_medium_freq = (wavelen <= low_freq_wavelen) & (wavelen >= high_freq_wavelen) inv_freq_llama = torch.where(is_medium_freq, smoothed_inv_freq, inv_freq_llama) inv_freq = inv_freq_llama # Generate position indices positions = torch.arange(context_length, dtype=dtype) # Compute the angles angles = positions[:, None] * inv_freq[None, :] # Shape: (context_length, head_dim // 2) # Expand angles to match the head_dim angles = torch.cat([angles, angles], dim=1) # Shape: (context_length, head_dim) # Precompute sine and cosine cos = torch.cos(angles) sin = torch.sin(angles) return cos, sin def apply_rope(x, cos, sin): # x: (batch_size, num_heads, seq_len, head_dim) batch_size, num_heads, seq_len, head_dim = x.shape assert head_dim % 2 == 0, "Head dimension must be even" # Split x into first half and second half x1 = x[..., : head_dim // 2] # First half x2 = x[..., head_dim // 2:] # Second half # Adjust sin and cos shapes cos = cos[:seq_len, :].unsqueeze(0).unsqueeze(0) # Shape: (1, 1, seq_len, head_dim) sin = sin[:seq_len, :].unsqueeze(0).unsqueeze(0) # Apply the rotary transformation rotated = torch.cat((-x2, x1), dim=-1) x_rotated = (x * cos) + (rotated * sin) # It's ok to use lower-precision after applying cos and sin rotation return x_rotated.to(dtype=x.dtype) def rescale_theta(theta_old, context_length_old, context_length_new): scaling_factor = context_length_new / context_length_old theta_new = theta_old * scaling_factor return theta_new def text_to_token_ids(text, tokenizer): encoded = tokenizer.encode(text) encoded_tensor = torch.tensor(encoded).unsqueeze(0) # add batch dimension return encoded_tensor def token_ids_to_text(token_ids, tokenizer): flat = token_ids.squeeze(0) # remove batch dimension return tokenizer.decode(flat.tolist()) def generate(model, idx, max_new_tokens, context_size, temperature=0.0, top_k=None, eos_id=None): # For-loop is the same as before: Get logits, and only focus on last time step for _ in range(max_new_tokens): idx_cond = idx[:, -context_size:] with torch.no_grad(): logits = model(idx_cond) logits = logits[:, -1, :] # Filter logits with top_k sampling if top_k is not None: # Keep only top_k values top_logits, _ = torch.topk(logits, top_k) min_val = top_logits[:, -1] logits = torch.where(logits < min_val, torch.tensor(float('-inf')).to(logits.device), logits) # Apply temperature scaling if temperature > 0.0: logits = logits / temperature # Apply softmax to get probabilities probs = torch.softmax(logits, dim=-1) # (batch_size, context_len) # Sample from the distribution idx_next = torch.multinomial(probs, num_samples=1) # (batch_size, 1) # Otherwise same as before: get idx of the vocab entry with the highest logits value else: idx_next = torch.argmax(logits, dim=-1, keepdim=True) # (batch_size, 1) if idx_next == eos_id: # Stop generating early if end-of-sequence token is encountered and eos_id is specified break # Same as before: append sampled index to the running sequence idx = torch.cat((idx, idx_next), dim=1) # (batch_size, num_tokens+1) return idx