--- library_name: transformers datasets: - rasyosef/amharic-sentiment language: - am metrics: - accuracy - precision - recall - f1 pipeline_tag: text-classification widget: - text: "አሪፍ ፊልም ነው።" example_title: "Example 1" - text: "ዩክሬን እና ሩስያ ከባድ ውግያ ላይ ናቸው።" example_title: "Example 2" - text: "ቆንጆ ልብስ" example_title: "Example 3" - text: "ጅላንፎ" example_title: "Example 4" --- This model is a fine-tuned version of [bert-medium-amharic](https://huggingface.co/rasyosef/bert-medium-amharic) on the [amharic-sentiment](https://huggingface.co/datasets/rasyosef/amharic-sentiment) dataset for **sentiment classification**. It achieves the following results on the evaluation set: - `Accuracy:` 0.83 - `Precision:` 0.84 - `Recall:` 0.83 - `F1:` 0.83 ## How to use You can use this model directly with a pipeline for text classification: ```python >>> from transformers import pipeline >>> bert_sentiment = pipeline("text-classification", model="rasyosef/bert-medium-amharic-finetuned-sentiment") >>> bert_sentiment(["አሪፍ ፊልም ነው።", "ዩክሬን እና ሩስያ ከባድ ውግያ ላይ ናቸው።"]) [{'label': 'positive', 'score': 0.9863048791885376}, {'label': 'negative', 'score': 0.9570127129554749}] ``` ## Code https://github.com/rasyosef/amharic-sentiment-classification