--- library_name: transformers license: apache-2.0 base_model: google-bert/bert-base-cased tags: - generated_from_trainer datasets: - conll2002 metrics: - precision - recall - f1 - accuracy model-index: - name: NER-finetuning-BETO-PRO results: - task: name: Token Classification type: token-classification dataset: name: conll2002 type: conll2002 config: es split: validation args: es metrics: - name: Precision type: precision value: 0.7331490537954497 - name: Recall type: recall value: 0.7922794117647058 - name: F1 type: f1 value: 0.7615681943677526 - name: Accuracy type: accuracy value: 0.9655162373585419 --- # NER-finetuning-BETO-PRO This model is a fine-tuned version of [google-bert/bert-base-cased](https://huggingface.co/google-bert/bert-base-cased) on the conll2002 dataset. It achieves the following results on the evaluation set: - Loss: 0.1391 - Precision: 0.7331 - Recall: 0.7923 - F1: 0.7616 - Accuracy: 0.9655 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.1028 | 1.0 | 1041 | 0.1424 | 0.7051 | 0.7603 | 0.7317 | 0.9618 | | 0.0678 | 2.0 | 2082 | 0.1391 | 0.7331 | 0.7923 | 0.7616 | 0.9655 | ### Framework versions - Transformers 4.46.2 - Pytorch 2.5.1+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3