raulgdp commited on
Commit
2854758
·
verified ·
1 Parent(s): 5591b4b

End of training

Browse files
Files changed (1) hide show
  1. README.md +102 -0
README.md ADDED
@@ -0,0 +1,102 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ license: apache-2.0
4
+ base_model: distilbert-base-uncased
5
+ tags:
6
+ - generated_from_trainer
7
+ datasets:
8
+ - conll2002
9
+ metrics:
10
+ - precision
11
+ - recall
12
+ - f1
13
+ - accuracy
14
+ model-index:
15
+ - name: distilbert-ner-qlorafinetune-runs
16
+ results: []
17
+ ---
18
+
19
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
20
+ should probably proofread and complete it, then remove this comment. -->
21
+
22
+ # distilbert-ner-qlorafinetune-runs
23
+
24
+ This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the conll2002 dataset.
25
+ It achieves the following results on the evaluation set:
26
+ - Loss: 0.2164
27
+ - Precision: 0.6299
28
+ - Recall: 0.6227
29
+ - F1: 0.6263
30
+ - Accuracy: 0.9372
31
+
32
+ ## Model description
33
+
34
+ More information needed
35
+
36
+ ## Intended uses & limitations
37
+
38
+ More information needed
39
+
40
+ ## Training and evaluation data
41
+
42
+ More information needed
43
+
44
+ ## Training procedure
45
+
46
+ ### Training hyperparameters
47
+
48
+ The following hyperparameters were used during training:
49
+ - learning_rate: 0.0004
50
+ - train_batch_size: 32
51
+ - eval_batch_size: 32
52
+ - seed: 42
53
+ - optimizer: Use paged_adamw_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
54
+ - lr_scheduler_type: linear
55
+ - training_steps: 640
56
+ - mixed_precision_training: Native AMP
57
+
58
+ ### Training results
59
+
60
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
61
+ |:-------------:|:------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
62
+ | 1.0711 | 0.0766 | 20 | 0.7111 | 0.0 | 0.0 | 0.0 | 0.8570 |
63
+ | 0.5291 | 0.1533 | 40 | 0.5467 | 0.0 | 0.0 | 0.0 | 0.8570 |
64
+ | 0.4545 | 0.2299 | 60 | 0.4850 | 0.2172 | 0.1687 | 0.1899 | 0.8769 |
65
+ | 0.4113 | 0.3065 | 80 | 0.4470 | 0.3227 | 0.1765 | 0.2282 | 0.8816 |
66
+ | 0.3837 | 0.3831 | 100 | 0.4049 | 0.4187 | 0.3840 | 0.4006 | 0.8896 |
67
+ | 0.334 | 0.4598 | 120 | 0.3639 | 0.4695 | 0.4276 | 0.4476 | 0.8981 |
68
+ | 0.3342 | 0.5364 | 140 | 0.3499 | 0.5104 | 0.4520 | 0.4794 | 0.8997 |
69
+ | 0.322 | 0.6130 | 160 | 0.3281 | 0.4939 | 0.4920 | 0.4929 | 0.9091 |
70
+ | 0.2868 | 0.6897 | 180 | 0.3021 | 0.5207 | 0.4646 | 0.4911 | 0.9145 |
71
+ | 0.2788 | 0.7663 | 200 | 0.2878 | 0.5361 | 0.5064 | 0.5209 | 0.9185 |
72
+ | 0.2748 | 0.8429 | 220 | 0.2864 | 0.5419 | 0.5232 | 0.5324 | 0.9197 |
73
+ | 0.2435 | 0.9195 | 240 | 0.2750 | 0.5306 | 0.5294 | 0.5300 | 0.9205 |
74
+ | 0.238 | 0.9962 | 260 | 0.2636 | 0.5525 | 0.5623 | 0.5573 | 0.9239 |
75
+ | 0.2465 | 1.0728 | 280 | 0.2616 | 0.5574 | 0.5602 | 0.5588 | 0.9255 |
76
+ | 0.2296 | 1.1494 | 300 | 0.2607 | 0.5859 | 0.5409 | 0.5625 | 0.9252 |
77
+ | 0.2141 | 1.2261 | 320 | 0.2491 | 0.5728 | 0.5841 | 0.5784 | 0.9279 |
78
+ | 0.2229 | 1.3027 | 340 | 0.2483 | 0.5849 | 0.5767 | 0.5808 | 0.9289 |
79
+ | 0.2234 | 1.3793 | 360 | 0.2413 | 0.5906 | 0.5712 | 0.5808 | 0.9310 |
80
+ | 0.2217 | 1.4559 | 380 | 0.2416 | 0.5890 | 0.5944 | 0.5917 | 0.9321 |
81
+ | 0.208 | 1.5326 | 400 | 0.2337 | 0.6117 | 0.5889 | 0.6001 | 0.9326 |
82
+ | 0.1961 | 1.6092 | 420 | 0.2387 | 0.5950 | 0.6018 | 0.5984 | 0.9321 |
83
+ | 0.2237 | 1.6858 | 440 | 0.2263 | 0.6230 | 0.6094 | 0.6161 | 0.9353 |
84
+ | 0.2029 | 1.7625 | 460 | 0.2262 | 0.6377 | 0.6045 | 0.6207 | 0.9353 |
85
+ | 0.203 | 1.8391 | 480 | 0.2229 | 0.6246 | 0.6167 | 0.6206 | 0.9358 |
86
+ | 0.2098 | 1.9157 | 500 | 0.2221 | 0.6277 | 0.6264 | 0.6270 | 0.9363 |
87
+ | 0.1907 | 1.9923 | 520 | 0.2237 | 0.6197 | 0.6186 | 0.6191 | 0.9355 |
88
+ | 0.1774 | 2.0690 | 540 | 0.2214 | 0.6284 | 0.6170 | 0.6226 | 0.9365 |
89
+ | 0.1822 | 2.1456 | 560 | 0.2213 | 0.6267 | 0.6211 | 0.6239 | 0.9368 |
90
+ | 0.1783 | 2.2222 | 580 | 0.2180 | 0.6308 | 0.6266 | 0.6287 | 0.9371 |
91
+ | 0.1856 | 2.2989 | 600 | 0.2174 | 0.6289 | 0.6206 | 0.6247 | 0.9369 |
92
+ | 0.1773 | 2.3755 | 620 | 0.2172 | 0.6192 | 0.6278 | 0.6235 | 0.9362 |
93
+ | 0.1647 | 2.4521 | 640 | 0.2164 | 0.6299 | 0.6227 | 0.6263 | 0.9372 |
94
+
95
+
96
+ ### Framework versions
97
+
98
+ - PEFT 0.13.2
99
+ - Transformers 4.46.3
100
+ - Pytorch 2.5.1
101
+ - Datasets 3.1.0
102
+ - Tokenizers 0.20.3