End of training
Browse files
README.md
ADDED
@@ -0,0 +1,102 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: peft
|
3 |
+
license: apache-2.0
|
4 |
+
base_model: distilbert-base-uncased
|
5 |
+
tags:
|
6 |
+
- generated_from_trainer
|
7 |
+
datasets:
|
8 |
+
- conll2002
|
9 |
+
metrics:
|
10 |
+
- precision
|
11 |
+
- recall
|
12 |
+
- f1
|
13 |
+
- accuracy
|
14 |
+
model-index:
|
15 |
+
- name: distilbert-ner-qlorafinetune-runs
|
16 |
+
results: []
|
17 |
+
---
|
18 |
+
|
19 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
20 |
+
should probably proofread and complete it, then remove this comment. -->
|
21 |
+
|
22 |
+
# distilbert-ner-qlorafinetune-runs
|
23 |
+
|
24 |
+
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the conll2002 dataset.
|
25 |
+
It achieves the following results on the evaluation set:
|
26 |
+
- Loss: 0.2164
|
27 |
+
- Precision: 0.6299
|
28 |
+
- Recall: 0.6227
|
29 |
+
- F1: 0.6263
|
30 |
+
- Accuracy: 0.9372
|
31 |
+
|
32 |
+
## Model description
|
33 |
+
|
34 |
+
More information needed
|
35 |
+
|
36 |
+
## Intended uses & limitations
|
37 |
+
|
38 |
+
More information needed
|
39 |
+
|
40 |
+
## Training and evaluation data
|
41 |
+
|
42 |
+
More information needed
|
43 |
+
|
44 |
+
## Training procedure
|
45 |
+
|
46 |
+
### Training hyperparameters
|
47 |
+
|
48 |
+
The following hyperparameters were used during training:
|
49 |
+
- learning_rate: 0.0004
|
50 |
+
- train_batch_size: 32
|
51 |
+
- eval_batch_size: 32
|
52 |
+
- seed: 42
|
53 |
+
- optimizer: Use paged_adamw_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
54 |
+
- lr_scheduler_type: linear
|
55 |
+
- training_steps: 640
|
56 |
+
- mixed_precision_training: Native AMP
|
57 |
+
|
58 |
+
### Training results
|
59 |
+
|
60 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
61 |
+
|:-------------:|:------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
62 |
+
| 1.0711 | 0.0766 | 20 | 0.7111 | 0.0 | 0.0 | 0.0 | 0.8570 |
|
63 |
+
| 0.5291 | 0.1533 | 40 | 0.5467 | 0.0 | 0.0 | 0.0 | 0.8570 |
|
64 |
+
| 0.4545 | 0.2299 | 60 | 0.4850 | 0.2172 | 0.1687 | 0.1899 | 0.8769 |
|
65 |
+
| 0.4113 | 0.3065 | 80 | 0.4470 | 0.3227 | 0.1765 | 0.2282 | 0.8816 |
|
66 |
+
| 0.3837 | 0.3831 | 100 | 0.4049 | 0.4187 | 0.3840 | 0.4006 | 0.8896 |
|
67 |
+
| 0.334 | 0.4598 | 120 | 0.3639 | 0.4695 | 0.4276 | 0.4476 | 0.8981 |
|
68 |
+
| 0.3342 | 0.5364 | 140 | 0.3499 | 0.5104 | 0.4520 | 0.4794 | 0.8997 |
|
69 |
+
| 0.322 | 0.6130 | 160 | 0.3281 | 0.4939 | 0.4920 | 0.4929 | 0.9091 |
|
70 |
+
| 0.2868 | 0.6897 | 180 | 0.3021 | 0.5207 | 0.4646 | 0.4911 | 0.9145 |
|
71 |
+
| 0.2788 | 0.7663 | 200 | 0.2878 | 0.5361 | 0.5064 | 0.5209 | 0.9185 |
|
72 |
+
| 0.2748 | 0.8429 | 220 | 0.2864 | 0.5419 | 0.5232 | 0.5324 | 0.9197 |
|
73 |
+
| 0.2435 | 0.9195 | 240 | 0.2750 | 0.5306 | 0.5294 | 0.5300 | 0.9205 |
|
74 |
+
| 0.238 | 0.9962 | 260 | 0.2636 | 0.5525 | 0.5623 | 0.5573 | 0.9239 |
|
75 |
+
| 0.2465 | 1.0728 | 280 | 0.2616 | 0.5574 | 0.5602 | 0.5588 | 0.9255 |
|
76 |
+
| 0.2296 | 1.1494 | 300 | 0.2607 | 0.5859 | 0.5409 | 0.5625 | 0.9252 |
|
77 |
+
| 0.2141 | 1.2261 | 320 | 0.2491 | 0.5728 | 0.5841 | 0.5784 | 0.9279 |
|
78 |
+
| 0.2229 | 1.3027 | 340 | 0.2483 | 0.5849 | 0.5767 | 0.5808 | 0.9289 |
|
79 |
+
| 0.2234 | 1.3793 | 360 | 0.2413 | 0.5906 | 0.5712 | 0.5808 | 0.9310 |
|
80 |
+
| 0.2217 | 1.4559 | 380 | 0.2416 | 0.5890 | 0.5944 | 0.5917 | 0.9321 |
|
81 |
+
| 0.208 | 1.5326 | 400 | 0.2337 | 0.6117 | 0.5889 | 0.6001 | 0.9326 |
|
82 |
+
| 0.1961 | 1.6092 | 420 | 0.2387 | 0.5950 | 0.6018 | 0.5984 | 0.9321 |
|
83 |
+
| 0.2237 | 1.6858 | 440 | 0.2263 | 0.6230 | 0.6094 | 0.6161 | 0.9353 |
|
84 |
+
| 0.2029 | 1.7625 | 460 | 0.2262 | 0.6377 | 0.6045 | 0.6207 | 0.9353 |
|
85 |
+
| 0.203 | 1.8391 | 480 | 0.2229 | 0.6246 | 0.6167 | 0.6206 | 0.9358 |
|
86 |
+
| 0.2098 | 1.9157 | 500 | 0.2221 | 0.6277 | 0.6264 | 0.6270 | 0.9363 |
|
87 |
+
| 0.1907 | 1.9923 | 520 | 0.2237 | 0.6197 | 0.6186 | 0.6191 | 0.9355 |
|
88 |
+
| 0.1774 | 2.0690 | 540 | 0.2214 | 0.6284 | 0.6170 | 0.6226 | 0.9365 |
|
89 |
+
| 0.1822 | 2.1456 | 560 | 0.2213 | 0.6267 | 0.6211 | 0.6239 | 0.9368 |
|
90 |
+
| 0.1783 | 2.2222 | 580 | 0.2180 | 0.6308 | 0.6266 | 0.6287 | 0.9371 |
|
91 |
+
| 0.1856 | 2.2989 | 600 | 0.2174 | 0.6289 | 0.6206 | 0.6247 | 0.9369 |
|
92 |
+
| 0.1773 | 2.3755 | 620 | 0.2172 | 0.6192 | 0.6278 | 0.6235 | 0.9362 |
|
93 |
+
| 0.1647 | 2.4521 | 640 | 0.2164 | 0.6299 | 0.6227 | 0.6263 | 0.9372 |
|
94 |
+
|
95 |
+
|
96 |
+
### Framework versions
|
97 |
+
|
98 |
+
- PEFT 0.13.2
|
99 |
+
- Transformers 4.46.3
|
100 |
+
- Pytorch 2.5.1
|
101 |
+
- Datasets 3.1.0
|
102 |
+
- Tokenizers 0.20.3
|