--- library_name: peft license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer datasets: - conll2002 metrics: - precision - recall - f1 - accuracy model-index: - name: distilbert-ner-qlorafinetune-runs results: [] --- # distilbert-ner-qlorafinetune-runs This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the conll2002 dataset. It achieves the following results on the evaluation set: - Loss: 0.2164 - Precision: 0.6299 - Recall: 0.6227 - F1: 0.6263 - Accuracy: 0.9372 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0004 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Use paged_adamw_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - training_steps: 640 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 1.0711 | 0.0766 | 20 | 0.7111 | 0.0 | 0.0 | 0.0 | 0.8570 | | 0.5291 | 0.1533 | 40 | 0.5467 | 0.0 | 0.0 | 0.0 | 0.8570 | | 0.4545 | 0.2299 | 60 | 0.4850 | 0.2172 | 0.1687 | 0.1899 | 0.8769 | | 0.4113 | 0.3065 | 80 | 0.4470 | 0.3227 | 0.1765 | 0.2282 | 0.8816 | | 0.3837 | 0.3831 | 100 | 0.4049 | 0.4187 | 0.3840 | 0.4006 | 0.8896 | | 0.334 | 0.4598 | 120 | 0.3639 | 0.4695 | 0.4276 | 0.4476 | 0.8981 | | 0.3342 | 0.5364 | 140 | 0.3499 | 0.5104 | 0.4520 | 0.4794 | 0.8997 | | 0.322 | 0.6130 | 160 | 0.3281 | 0.4939 | 0.4920 | 0.4929 | 0.9091 | | 0.2868 | 0.6897 | 180 | 0.3021 | 0.5207 | 0.4646 | 0.4911 | 0.9145 | | 0.2788 | 0.7663 | 200 | 0.2878 | 0.5361 | 0.5064 | 0.5209 | 0.9185 | | 0.2748 | 0.8429 | 220 | 0.2864 | 0.5419 | 0.5232 | 0.5324 | 0.9197 | | 0.2435 | 0.9195 | 240 | 0.2750 | 0.5306 | 0.5294 | 0.5300 | 0.9205 | | 0.238 | 0.9962 | 260 | 0.2636 | 0.5525 | 0.5623 | 0.5573 | 0.9239 | | 0.2465 | 1.0728 | 280 | 0.2616 | 0.5574 | 0.5602 | 0.5588 | 0.9255 | | 0.2296 | 1.1494 | 300 | 0.2607 | 0.5859 | 0.5409 | 0.5625 | 0.9252 | | 0.2141 | 1.2261 | 320 | 0.2491 | 0.5728 | 0.5841 | 0.5784 | 0.9279 | | 0.2229 | 1.3027 | 340 | 0.2483 | 0.5849 | 0.5767 | 0.5808 | 0.9289 | | 0.2234 | 1.3793 | 360 | 0.2413 | 0.5906 | 0.5712 | 0.5808 | 0.9310 | | 0.2217 | 1.4559 | 380 | 0.2416 | 0.5890 | 0.5944 | 0.5917 | 0.9321 | | 0.208 | 1.5326 | 400 | 0.2337 | 0.6117 | 0.5889 | 0.6001 | 0.9326 | | 0.1961 | 1.6092 | 420 | 0.2387 | 0.5950 | 0.6018 | 0.5984 | 0.9321 | | 0.2237 | 1.6858 | 440 | 0.2263 | 0.6230 | 0.6094 | 0.6161 | 0.9353 | | 0.2029 | 1.7625 | 460 | 0.2262 | 0.6377 | 0.6045 | 0.6207 | 0.9353 | | 0.203 | 1.8391 | 480 | 0.2229 | 0.6246 | 0.6167 | 0.6206 | 0.9358 | | 0.2098 | 1.9157 | 500 | 0.2221 | 0.6277 | 0.6264 | 0.6270 | 0.9363 | | 0.1907 | 1.9923 | 520 | 0.2237 | 0.6197 | 0.6186 | 0.6191 | 0.9355 | | 0.1774 | 2.0690 | 540 | 0.2214 | 0.6284 | 0.6170 | 0.6226 | 0.9365 | | 0.1822 | 2.1456 | 560 | 0.2213 | 0.6267 | 0.6211 | 0.6239 | 0.9368 | | 0.1783 | 2.2222 | 580 | 0.2180 | 0.6308 | 0.6266 | 0.6287 | 0.9371 | | 0.1856 | 2.2989 | 600 | 0.2174 | 0.6289 | 0.6206 | 0.6247 | 0.9369 | | 0.1773 | 2.3755 | 620 | 0.2172 | 0.6192 | 0.6278 | 0.6235 | 0.9362 | | 0.1647 | 2.4521 | 640 | 0.2164 | 0.6299 | 0.6227 | 0.6263 | 0.9372 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.3 - Pytorch 2.5.1 - Datasets 3.1.0 - Tokenizers 0.20.3