--- library_name: transformers license: mit base_model: FacebookAI/xlm-roberta-large tags: - generated_from_trainer datasets: - conll2002 metrics: - precision - recall - f1 - accuracy model-index: - name: xlm-roberta-large-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2002 type: conll2002 config: es split: validation args: es metrics: - name: Precision type: precision value: 0.8637694213015087 - name: Recall type: recall value: 0.8814338235294118 - name: F1 type: f1 value: 0.8725122256340272 - name: Accuracy type: accuracy value: 0.9794265193673072 --- # xlm-roberta-large-finetuned-ner This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the conll2002 dataset. It achieves the following results on the evaluation set: - Loss: 0.0882 - Precision: 0.8638 - Recall: 0.8814 - F1: 0.8725 - Accuracy: 0.9794 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0718 | 1.0 | 1041 | 0.1022 | 0.8368 | 0.8612 | 0.8488 | 0.9764 | | 0.0398 | 2.0 | 2082 | 0.0882 | 0.8638 | 0.8814 | 0.8725 | 0.9794 | ### Framework versions - Transformers 4.49.0 - Pytorch 2.6.0+cu124 - Datasets 3.4.1 - Tokenizers 0.21.1