"""YOLO model for Hugging Face Transformers.""" import torch from pathlib import Path from typing import Dict, Any, Union import numpy as np import logging from ultralytics import YOLO logger = logging.getLogger(__name__) class YOLOSegmentationPipeline: """YOLO segmentation pipeline for Hugging Face Hub.""" def __init__(self, model_path: Union[str, Path], **kwargs): """Initialize the pipeline with model path.""" self.model_path = str(model_path) self.model = None self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") self.load_model() def load_model(self): """Load the YOLO model.""" logger.info(f"Loading model from {self.model_path}") self.model = YOLO(self.model_path) self.model.to(self.device) self.model.eval() logger.info(f"Model loaded on {self.device}") def __call__(self, inputs: Dict[str, Any], **kwargs) -> Dict[str, Any]: """ Run inference on input image. Args: inputs: Dictionary containing 'image' (PIL Image) **kwargs: Additional inference parameters Returns: Dictionary with 'predictions' key containing detection results """ from PIL import Image # Get input image image = inputs.get("image") if image is None: raise ValueError("Input must contain 'image' key with PIL Image") # Convert to RGB if needed if image.mode != "RGB": image = image.convert("RGB") # Run inference with torch.no_grad(): results = self.model(image, **kwargs) # Process results return self._format_results(results[0]) def _format_results(self, result) -> Dict[str, Any]: """Format YOLO results for Hugging Face API.""" # Get boxes if available if hasattr(result, 'boxes') and result.boxes is not None: boxes = result.boxes.xyxy.cpu().numpy() scores = result.boxes.conf.cpu().numpy() labels = result.boxes.cls.cpu().numpy().astype(int) else: boxes = np.zeros((0, 4)) scores = np.zeros(0) labels = np.zeros(0, dtype=int) # Get masks if available if hasattr(result, 'masks') and result.masks is not None: masks = result.masks.data.cpu().numpy() else: masks = np.zeros((0, *result.orig_shape)) # Format predictions predictions = [] for i, (box, score, label) in enumerate(zip(boxes, scores, labels)): prediction = { 'box': box.tolist(), 'score': float(score), 'label': int(label), 'mask': masks[i].tolist() if i < len(masks) else None } predictions.append(prediction) return {'predictions': predictions}